Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 068301    DOI: 10.1088/0256-307X/32/6/068301
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays
FAN Xi1,2,3, CHEN Hou-Peng1,2**, WANG Qian1,2, WANG Yue-Qing1,2,3, LV Shi-Long1,2, LIU Yan1,2, SONG Zhi-Tang1,2, FENG Gao-Ming4, LIU Bo1,2
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2Shanghai Key Laboratory of Nanofabrication Technology for Memory, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050
3University of Chinese Academy of Sciences, Beijing 100049
4United Laboratory, Semiconductor Manufacturing International Corporation, Shanghai 201203
Cite this article:   
FAN Xi, CHEN Hou-Peng, WANG Qian et al  2015 Chin. Phys. Lett. 32 068301
Download: PDF(850KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel slow-down set waveform is proposed to improve the set performance and a 1 kb phase change random access memory chip fabricated with a 130 nm CMOS technology is implemented to investigate the set performance by different set programming strategies based on this new set pulse. The amplitude difference (I1?I2) of the set pulse is proved to be a crucial parameter for set programming. We observe and analyze the cell characteristics with different I1?I2 by means of thermal simulations and high-resolution transmission electron microscopy, which reveal that an incomplete set programming will occur when the proposed slow-down pulse is set with an improperly high I1?I2. This will lead to an amorphous residue in the active region. We also discuss the programming method to avoid the set performance degradations.
Received: 21 October 2014      Published: 30 June 2015
PACS:  83.10.Tv (Structural and phase changes)  
  85.30.-z (Semiconductor devices)  
  85.35.-p (Nanoelectronic devices)  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/068301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/068301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Xi
CHEN Hou-Peng
WANG Qian
WANG Yue-Qing
LV Shi-Long
LIU Yan
SONG Zhi-Tang
FENG Gao-Ming
LIU Bo
[1] Philipp J B, Ruf B, Ruster C, Andres D, Majewski P, Kund M, Happ T D and Bergmann R 2008 Proc. -Annu. Non-Volatile Mem. Technol. Symp. NVMTS p 1
[2] Kang D H, Lee J H, Kong J H, Ha D, Yu J, Um C Y, Park J H, Yeung F, Kim J H, Park W I, Jeon Y J, Lee M K, Park J H, Song Y J, Oh J H and Jeong H S 2008 Dig Tech. Pap. Symp. VLSI Technol. p 98
[3] Chen Y, Song Z, Chen X, Liu B, Xu C, Feng G, Wang L, Zhong M and Feng S 2010 Chin. Phys. Lett. 27 107302
[4] Bedeschi F, Boffmo C, Bonizzoni E, Resta C, Torelli G and Zella D 2006 Proc. IEEE Int. Symp. Circuits Syst. p 967
[5] Bedeschi F Bonizzoni E, Casagrande G, Gastaldi R, Resta C, Torelli G and Zella D 2005 IEEE international symposium on circuits and systems (Kobe, Japan) p 1270
[6] Oh H R, Cho B H, Cho W Y, Kang S, Choi B, Kim H J, Kim K S, Kim D E, Kwak C K, Byun H G, Jeong G T, Jeong H S and Kim K 2006 IEEE J. Solid-State Circuits 41 122
[7] Xu L, Chen X, Song Z, Chen Y, Liu B, Chen H, Yang Z, Wu G, Cai D, Feng G and Li Y 2013 Jpn. J. Appl. Phys. 52 014101
[8] Cai D, Chen H, Wang Q, Chen Y, Song Z, Wu G and Feng S 2012 IEEE Electron Device Lett. 33 1270
[9] Gong Y, Song Z, Ling Y, Liu Y and Feng S 2009 Chin. Phys. Lett. 26 118101
[10] Gong Y, Ling Y, Song Z and Feng S 2009 Jpn. J. Appl. Phys. 48 064505
[11] Feiedrich I, Weidenhof, Njoroge W, Franz P and Wuttig M 2000 J. Appl. Phys. 87 4130
[12] Faraclas A, Williams N, Gokirmak A and Silva H2011 IEEE Electron Device Lett. 32 1737
[13] Fillot F, Loubriat S, Gergaud P and Maitrejean S 2011 Electrochem. Solid-State Lett. 14 H285
Related articles from Frontiers Journals
[1] Guanying Xing, Weixian Zhao, Run Hu, and Xiaobing Luo. Spatiotemporal Modulation of Thermal Emission from Thermal-Hysteresis Vanadium Dioxide for Multiplexing Thermotronics Functionalities[J]. Chin. Phys. Lett., 2021, 38(12): 068301
[2] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 068301
[3] Lingyun Zhang. Mechanism for the Self-Assembly of Hollow Micelles from Rod-Coil Block Copolymers[J]. Chin. Phys. Lett., 2019, 36(7): 068301
[4] Duan Kang, Ye-Xin Feng, Ying Yuan, Qi-Jun Ye, Feng Zhu, Hao-Yan Huo, Xin-Zheng Li, Xiang Wu. Hydrogen-Bond Symmetrization of $\delta$-AlOOH[J]. Chin. Phys. Lett., 2017, 34(10): 068301
[5] Qiu-Xue Jin, Bo Liu, Yan Liu, Wei-Wei Wang, Heng Wang, Zhen Xu, Dan Gao, Qing Wang, Yang-Yang Xia, Zhi-Tang Song, Song-Lin Feng. Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling[J]. Chin. Phys. Lett., 2016, 33(09): 068301
[6] ZHENG Jie, FU Wei-Juan, ZHOU Lu-Wei. Shear Banding Driven by Electric Field and Shear Flow[J]. Chin. Phys. Lett., 2013, 30(9): 068301
[7] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, LI Yi-Jin, FENG Song-Lin. Three-Dimensional Finite Element Simulations for the Thermal Characteristics of PCRAMs with Different Buffer Layer Materials[J]. Chin. Phys. Lett., 2010, 27(8): 068301
[8] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, FENG Song-Lin. Simulation of SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling[J]. Chin. Phys. Lett., 2009, 26(11): 068301
[9] DING Sheng, SONG Zhi-Tang, LIU Bo, ZHU Min, CHEN Xiao-Gang, CHEN Yi-Feng, SHEN Ju, FU Cong, FENG Song-Lin. A 0.18-μm 3.3V 16k Bits 1R1T Phase Change Random Access Memory (PCRAM) Chip[J]. Chin. Phys. Lett., 2008, 25(10): 068301
[10] GONG Yue-Feng, LING Yun, SONG Zhi-Tang, FENG Song-Lin. Simulation of Phase-Change Random Access Memory with Ring-Type Contactor for Low Reset Current by Finite Element Modelling[J]. Chin. Phys. Lett., 2008, 25(9): 068301
[11] ZU Fang-Qiu, YU Jin, XU Wei, ZHANG Yan, YANG Hui-Zhen. Reversibility of Temperature-Induced Liquid Transition in Pb26Sn42Bi32 Melt: Experimental Evidence with Electrical Property[J]. Chin. Phys. Lett., 2008, 25(4): 068301
[12] LI Xian-Fen, CHEN Hong-Sheng, ZU Fang-Qiu, CHEN Zhi-Hao, SUN Qi-Qiang, GUO Lei-Lei. Kinetics of Liquid Structure Transition of Sn--(40wt%)Bi Melt[J]. Chin. Phys. Lett., 2008, 25(1): 068301
[13] ZHU Yue-Jin, MA Yu-Qiang. Ordered Structures of a Binary Mixture with Mobile Particles System[J]. Chin. Phys. Lett., 2003, 20(5): 068301
Viewed
Full text


Abstract