Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 064301    DOI: 10.1088/0256-307X/32/6/064301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
On the Fundamental Mode Love Wave in Devices Incorporating Thick Viscoelastic Layers
LIU Jian-Sheng**, WANG Li-Jun, HE Shi-Tang
Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
LIU Jian-Sheng, WANG Li-Jun, HE Shi-Tang 2015 Chin. Phys. Lett. 32 064301
Download: PDF(535KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an ST-90° X quartz substrate and two 28-μm periodic interdigital transducers. Both the calculated and the measured results show an increase in propagation velocity when h/λ>0.05. The measured insertion loss of LWs is consistent with the calculated propagation loss. The insertion loss of bulk waves is also measured and is compared with that of LWs.
Received: 05 February 2015      Published: 30 June 2015
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.38.+n (Transduction; acoustical devices for the generation and reproduction of sound)  
  62.20.-x (Mechanical properties of solids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/064301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/064301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Jian-Sheng
WANG Li-Jun
HE Shi-Tang
[1] Kim C and Jhang K 2012 Chin. Phys. Lett. 29 120701
[2] Khaled S M, Soliman R K and Sara I A 2013 Chin. Phys. B 22 124702
[3] Tan F and Huang X 2013 Chin. Phys. Lett. 30 050701
[4] Gizeli E, Stevenson A C, Goddard N J and Lowe C R 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 39 657
[5] Kovacs G, Lubking G W, Vellekoop M J and Venema A 1992 IEEE Ultrason. Symp. Proc. (Tucson Arizona, USA 20–23 October 1992) p 281
[6] McHale G Newton M I and Martin F 2003 J. Appl. Phys. 93 675
[7] Matatagui D, Fernández M J, Fontecha J, Sayago I, Gràcia I, Cané C, Horrillo M C and Santos J P 2014 Talanta 120 408
[8] McHale G, Newton M I, Martin F, Gizeli E and Melzak K A 2001 Appl. Phys. Lett. 79 3542
[9] Newton M I McHale G and Martin F 2004 Sens. Actuators A 109 180
[10] Jakoby B and Vellekoop M J 1997 Smart Mater. Struct. 6 668
[11] Liu J and He S 2010 Int. J. Solids Struct. 47 169
[12] Liu J 2014 AIP Adv. 4 077102
[13] Liu J, Wang L, Lu Y and He S 2013 Smart Mater. Struct. 22 125034
[14] Penza M and Cassano G 2000 Sens. Actuators B 68 300
[15] Zimmermann C, Rebière D, Déjous C, Pistré J, Chastaing E and Planade R 2001 Sens. Actuators B 76 86
Related articles from Frontiers Journals
[1] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 064301
[2] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 064301
[3] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 064301
[4] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 064301
[5] Jin-Fu Liang, Yu An, Wei-Zhong Chen. Computational Simulation of Sodium Doublet Line Intensities in Multibubble Sonoluminescence[J]. Chin. Phys. Lett., 2019, 36(10): 064301
[6] Di Wu, De-Yao Yin, Zhi-Yuan Xiao, Qing-Fan Shi. Design of an Acoustic Levitator for Three-Dimensional Manipulation of Numerous Particles[J]. Chin. Phys. Lett., 2019, 36(9): 064301
[7] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 064301
[8] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 064301
[9] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 064301
[10] Ke-xue Sun, Shu-yi Zhang, Kiyotaka Wasa. High Ferroelectricities and High Curie Temperature of BiInO$_{3}$PbTiO$_{3}$ Thin Films Deposited by RF Magnetron Sputtering Method[J]. Chin. Phys. Lett., 2018, 35(12): 064301
[11] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 064301
[12] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 064301
[13] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 064301
[14] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 064301
[15] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 064301
Viewed
Full text


Abstract