Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 064207    DOI: 10.1088/0256-307X/32/6/064207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Effect of In Diffusion on the Property of Blue Light-Emitting Diodes
ZENG Yong-Ping1, LIU Wen-Jie2, WENG Guo-En2, ZHAO Wan-Ru1, ZUO Hai-Jie1, YU Jian2, ZHANG Jiang-Yong1, YING Lei-Ying2, ZHANG Bao-Ping1**
1Optoelectronics Engineering Research Center, Department of Electronic Engineering, Xiamen University, Xiamen 361005
2Department of Physics, Xiamen University, Xiamen 361005
Cite this article:   
ZENG Yong-Ping, LIU Wen-Jie, WENG Guo-En et al  2015 Chin. Phys. Lett. 32 064207
Download: PDF(681KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In diffusion to blue light-emitting diode (LED) wafers is performed by the inductive coupled plasma (ICP) treatment of a covering layer of indium tin oxide (ITO) on the wafer surface. The electrical property of the p-type contact is improved and the redshift of photoluminescence (PL) from the InGaN quantum well of the wafer is found. Measurements by x-ray photoelectron spectroscopy (XPS) demonstrate that In atoms have diffused into p-GaN. Reflectance spectra of the sample surface reveal the variation caused by the ICP treatment. A model of compensation of the in-plane strain of the InGaN layer is used to explain the redshift of the PL data. Finally, LEDs are fabricated by using as-grown and ICP-treated wafers and their properties are compared. Under an injection current of 20 mA, LEDs with ICP-induced In doping show a decrease of 0.3 V in the forward voltage and an increase of 23% in the light output, respectively.
Received: 16 March 2015      Published: 30 June 2015
PACS:  42.70.-a (Optical materials)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
  42.79.-e (Optical elements, devices, and systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/064207       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/064207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZENG Yong-Ping
LIU Wen-Jie
WENG Guo-En
ZHAO Wan-Ru
ZUO Hai-Jie
YU Jian
ZHANG Jiang-Yong
YING Lei-Ying
ZHANG Bao-Ping
[1] Nakamura S et al 1995 Appl. Phys. Lett. 67 1868
[2] Cao W Y et al 2013 Chin. Phys. B 22 076803
[3] Wong W S et al 2000 Appl. Phys. Lett. 77 2822
[4] Ling M M et al 2014 Chin. Phys. B 23 054211
[5] Jang J S et al 1999 Appl. Phys. Lett. 74 70
[6] Nakamura S et al 1992 Jpn. J. Appl. Phys. 31 139
[7] Kuo C H et al 2002 IEEE Electron Device Lett. 23 240
[8] Wu L L et al 2012 Semicond. Sci. Technol. 27 085017
[9] Kusakbe K and Ohkawa K 2003 J. Vac. Sci. Technol. B 21 1839
[10] Hayes J M et al 1999 Appl. Phys. Lett. 75 2097
[11] Liu K T et al 2009 Jpn. J. Appl. Phys. 48 081003
[12] Xu Z Y et al 2010 Chin. Phys. Lett. 27 127304
[13] Kazuhide K et al 2003 J. Appl. Phys. 93 3370
[14] Ho W J et al 2001 Appl. Phys. Lett. 78 2015
[15] Ronning C et al 2000 J. Appl. Phys. 87 2149
[16] Gibbons J F 1968 Proc. IEEE 56 295
[17] Xue Z Q et al 2010 Appl. Phys. Lett. 96 141101
[18] Kim D J et al 2001 Phys. Status Solidi 228 375
[19] Lim Y J et al 2004 Appl. Phys. Lett. 84 2515
[20] Kim D W et al 2001 Thin Solid Films 398 87
[21] Waltereit P et al 2002 J. Appl. Phys. 92 456
[22] Zhao D G et al 2003 Appl. Phys. Lett. 83 677
[23] Shan W et al 1996 Phys. Rev. B 54 13460
[24] Mayrock O et al 2000 Phys. Rev. B 62 16870
[25] Fujiwara Y et al 1986 Jpn. J. Appl. Phys. 25 1628
[26] Fujiwara Y et al 1986 Appl. Phys. A 41 115
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 064207
[2] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 064207
[3] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 064207
[4] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 064207
[5] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 064207
[6] Xing-Yong Huang, Da-Qin Chen, Bi-Zhou Shen, Hai-Zhi Song. Preparation and 1.06μm Fluorescence Decay of Nd$^{3+}$-Doped Glass Ceramics Containing NaYF$_{4}$ Nanocrystallites[J]. Chin. Phys. Lett., 2019, 36(8): 064207
[7] Zong-Peng Song, Hai-Ou Zhu, Wen-Tao Shi, Da-Lin Sun, Shuang-Chen Ruan. Ultrafast charge transfer in dual graphene-WS$_{2}$ van der Waals quadrilayer heterostructures[J]. Chin. Phys. Lett., 2018, 35(12): 064207
[8] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 064207
[9] Sohail Abdul Jalil, Mahreen Akram, Gwanho Yoon, Ayesha Khalid, Dasol Lee, Niloufar Raeis-Hosseini, Sunae So, Inki Kim, Qazi Salman Ahmed, Junsuk Rho, Muhammad Qasim Mehmood. High Refractive Index Ti$_3$O$_5$ Films for Dielectric Metasurfaces[J]. Chin. Phys. Lett., 2017, 34(8): 064207
[10] A. R. Muhammad, M. T. Ahmad, R. Zakaria, H. R. A. Rahim, S. F. A. Z. Yusoff, K. S. Hamdan, H. H. M. Yusof, H. Arof, S. W. Harun.. Q-Switching Pulse Operation in 1.5-μm Region Using Copper Nanoparticles as Saturable Absorber[J]. Chin. Phys. Lett., 2017, 34(3): 064207
[11] N. A. A. Kadir, E. I. Ismail, A. A. Latiff, H. Ahmad, H. Arof, S. W. Harun. Transition Metal Dichalcogenides (WS$_{2}$ and MoS$_{2}$) Saturable Absorbers for Mode-Locked Erbium-Doped Fiber Lasers[J]. Chin. Phys. Lett., 2017, 34(1): 064207
[12] M. F. M. Rusdi, A. A. Latiff, E. Hanafi, M. B. H. Mahyuddin, H. Shamsudin, K. Dimyati, S. W. Harun. Molybdenum Disulphide Tape Saturable Absorber for Mode-Locked Double-Clad Ytterbium-Doped All-Fiber Laser Generation[J]. Chin. Phys. Lett., 2016, 33(11): 064207
[13] Yang-Yang Dun, Ping Li, Xiao-Han Chen, Bao-Min Ma. High-Power Passively Q-Switched Nd:YAG Laser at 1112nm with a Cr$^{4+}$:YAG Saturable Absorber[J]. Chin. Phys. Lett., 2016, 33(02): 064207
[14] XU Ling, TAN Yi-Dong, ZHANG Shu-Lian, SUN Li-Qun. Measurement of Refractive Index Ranging from 1.42847 to 2.48272 at 1064 nm Using a Quasi-Common-Path Laser Feedback System[J]. Chin. Phys. Lett., 2015, 32(09): 064207
[15] YANG Qi, XU Shan-Hui, LI Can, YANG Chang-Sheng, FENG Zhou-Ming, XIAO Yu, HUANG Xiang, YANG Zhong-Min. A Single-Frequency Linearly Polarized Fiber Laser Using a Newly Developed Heavily Tm3+-Doped Germanate Glass Fiber at 1.95 μm[J]. Chin. Phys. Lett., 2015, 32(09): 064207
Viewed
Full text


Abstract