Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 063101    DOI: 10.1088/0256-307X/32/6/063101
ATOMIC AND MOLECULAR PHYSICS |
A High-Precision Calculation of Bond Length and Spectroscopic Constants of Hg2 Based on the Coupled-Cluster Theory with Spin–Orbit Coupling
TU Zhe-Yan1,2**, WANG Wen-Liang1
1Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062
2School of Science, Xi'an Polytechnic University, Xi'an 710048
Cite this article:   
TU Zhe-Yan, WANG Wen-Liang 2015 Chin. Phys. Lett. 32 063101
Download: PDF(434KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the two-component relativistic effective core potential and matched basis sets cc-pwcvnz-pp (n=Q, 5), combining the completed basis-set extrapolation of electronic correlation energy and the fourth-order polynomial fitting technique, the bond length and spectroscopic constants of Hg2 are studied by the coupled cluster theory with spin–orbit coupling. Spin–orbit coupling is included in the post Hartree–Fock procedure, i.e., in the coupled-cluster iteration, to obtain more reliable theoretical results. The results show that our theoretical values agree with the experimental values very well and will be helpful to understand the spectral character of Hg2.
Received: 01 February 2015      Published: 30 June 2015
PACS:  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.15.vn (Electron correlation calculations for diatomic molecules)  
  31.15.bw (Coupled-cluster theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/063101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/063101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TU Zhe-Yan
WANG Wen-Liang
[1] Pyykk? P 1988 Chem. Rev. 88 563
[2] Gong S J, Zhou F, Wu H Y, Wan W, Chen L and Feng M 2015 Chin. Phys. Lett. 32 013201
[3] Bartlett R J and Musia? M 2007 Rev. Mod. Phys. 79 291
[4] Liu W and Van Wüllen C 1999 J. Chem. Phys. 110 3730
[5] Wang F, Gauss J and van Wüllen C 2008 J. Chem. Phys. 129 064113
[6] Christiansen O, H ?ttig C and Gauss J 1998 J. Chem. Phys. 109 4745
[7] Strojecki M, Ruszczak M, Kro?nicki M, ?ukomski M and Koperski J 2006 Chem. Phys. 327 229
[8] Wei L M, Li P, Qiao L W and Tang K T 2013 J. Chem. Phys. 139 154306
[9] Bu?insky L, Biskupi? S, Il?in M, Luke? V and Laurinc V 2009 J. Comput. Chem. 30 65
[10] Pahl E, Figgen D, Borschevsky A, Peterson K A and Schwerdtfeger P 2011 Theor. Chem. Acc. 129 651
[11] Kullie O 2014 J. Chem. Phys. 140 024304
[12] Stanton J F, Gauss J, Watts J D and Bartlett R J 1991 J. Chem. Phys. 94 4334
[13] Kucharski S A and Bartlett R J 1992 J. Chem. Phys. 97 4282
[14] Raghavachari K, Trucks G W, Pople J A and Head-Gordon M 1989 Chem. Phys. Lett. 157 479
[15] Watts J D, Gauss J and Bartlett R J 1993 J. Chem. Phys. 98 8718
[16] CFOUR, a Quantum Chemical Program Package written by Stanton J F, Gauss J, Harding M E, Szalay P G with contributions from Auer A A, Bartlett R J, Benedikt U, Berger C, Bernholdt D E, Bomble Y J, Cheng L, Christiansen O, Heckert M, Heun O, Huber C, Jagau T -C, Jonsson D, Jusélius J, Klein K, Lauderdale W J, Matthews D A, Metzroth T, Mück L A, O'Neill D P, Price D R, Prochnow E, Puzzarini C, Ruud K, Schiffmann F, Schwalbach W, Simmons C, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts J D; the integral packages MOLECULE (Alml?f J and Taylor P R); PROPS (Taylor P R); ABACUS (Helgaker T, Jensen H J Aa, J ?rgensen P and Olsen J); and ECP Routines by Mitin A V and van Wüllen C. For the current version, see http://www.cfour.de/
[17] Tu Z Y, Yang D D, Wang F and Guo J W 2011 J. Chem. Phys. 135 034115
[18] Peterson K A and Puzzarini C 2005 Theor. Chem. Acc. 114 283
[19] Yang D D and Wang F 2012 Theor. Chem. Acc. 131 1117
[20] Koperski J, Atkinson J B and Krause L 1994 Can. J. Phys. 72 1070
[21] Koperski J, Atkinson J B and Krause L 1997 J. Mol. Spectrosc. 184 300
Related articles from Frontiers Journals
[1] Shu-Tao Zhao, Jun Li, Rui Li, Shuang Yin, and Hui-Jie Guo. Configuration Interaction of Electronic Structure and Spectroscopy of AlH and Its Cation[J]. Chin. Phys. Lett., 2021, 38(4): 063101
[2] Gui-Ying Liang, Yi-Geng Peng, Rui Li, Yong Wu, and Jian-Guo Wang. Molecular Opacity Calculations for Lithium Hydride at Low Temperature[J]. Chin. Phys. Lett., 2020, 37(12): 063101
[3] Dong Yin, Yong-Hui Zhang, Cheng-Bin Li, Xian-Zhou Zhang. Magic Wavelengths for the $1S$–$2S$ and $1S$–$3S$ Transitions in Hydrogen Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 063101
[4] Dong-Lan Wu, Bin Tan, Xue-Feng Zeng, Hui-Jun Wan, An-Dong Xie, Bing Yan, Da-Jun Ding. Theoretical Study on the Spectroscopic Parameters and Transition Properties of MgH Radical Including Spin–orbit Coupling[J]. Chin. Phys. Lett., 2016, 33(06): 063101
[5] LI Qi-Nan, ZHAO Shu-Tao, ZHANG Xiao-Mei, LUO Wang, LI Rui, YAN Bing. A Precise Description of the Electronic Structures and Spin-Allowed Transition Properties of PF and Its Cation: All-Electron Configuration-Interaction Investigations Including Relativistic Effect[J]. Chin. Phys. Lett., 2015, 32(07): 063101
[6] LIU Kun, NING Chuan-Gang, DENG Jing-Kang. Interpretation of the Experimental Electron Momentum Spectra of 5e1/2 and 5e3/2 Orbitals of CF3I with Relativistic Calculations[J]. Chin. Phys. Lett., 2010, 27(7): 063101
[7] LI Rui, YAN Bing, ZHAO Shu-Tao, GUO Qing-Qun, LIAN Ke-Yan, TIAN Chuan-Jin, PAN Shou-Fu. Electronic Curves Crossing in Methyl Iodide by Spin--Orbit Ab Initio Calculation[J]. Chin. Phys. Lett., 2008, 25(5): 063101
Viewed
Full text


Abstract