Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 059801    DOI: 10.1088/0256-307X/32/5/059801
Constraining Equation of State of Dark Matter: Including Weak Gravitational Lensing
YANG Lei1, YANG Wei-Qiang1, XU Li-Xin1,2**
1Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
2State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
YANG Lei, YANG Wei-Qiang, XU Li-Xin 2015 Chin. Phys. Lett. 32 059801
Download: PDF(517KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Usually the equation of state (EoS) of dark matter is zero when it is cold, however there exists the possibility of a (effective) nonzero EoS of dark matter due to its decay and interaction with dark energy. In this work, we try to constrain the EoS of dark matter wdm using the currently available cosmic observations which include the geometrical and dynamical measurements. For the geometrical measurements, the luminosity distance of type Ia supernovae, the angular diameter distance and comoving sound horizon from baryon acoustic oscillations and the cosmic microwave background radiation will be employed. The data points from the redshift-space distortion and weak gravitational lensing will be taken as dynamical measurements. Using the Markov chain Monte Carlo method, we obtain a very tight constraint on the EoS of dark matter: wdm=0.0000532?0.000686?0.00136?0.00177+0.000692+0.00136+0.00183.
Received: 14 January 2015      Published: 01 June 2015
PACS:  98.80.-k (Cosmology)  
  98.80.Es (Observational cosmology (including Hubble constant, distance scale, cosmological constant, early Universe, etc))  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
YANG Wei-Qiang
XU Li-Xin
[1] Weinberg S 1989 Rev. Mod. Phys. 61 1
[2] Sahni V and Starobinsky A A 2000 Int. J. Mod. Phys. D 9 373
[3] Carroll S M 2001 Living Rev. Relativ. 4 1
[4] Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559
[5] Li M et al 2011 Commun. Theor. Phys. 56 525
[6] Xu L 2013 Phys. Rev. D 87 0435255
[7] Muller C M 2005 Phys. Rev. D 71 047302
[8] Calabrese E, Migliaccio M, Pagano L, Troia G D, Melchiorri A and Natoli P 2009 Phys. Rev. D 80 063539
[9] Wei H, Chen Z C and Liu J 2013 Phys. Lett. B 720 271
[10] Xu L and Chang Y 2013 Phys. Rev. D 88 127301
[11] Kumar S and Xu L 2014 Phys. Lett. B 737 244
[12] Yang W and Xu L 2013 arXiv:1311.3419[astro-ph.CO]
[13] Nesseris S and Perivolaropoulos L 2008 Phys. Rev. D 77 023504
[14] Song Y S and Percival W J 2009 J. Cosmol. Astropart. Phys. 10 4
[15] Percival W J et al 2004 Mon. Not. R. Astron. Soc. 353 1201
[16] Blake C et al 2011 Mon. Not. R. Astron. Soc. 415 2876
[17] Samushia L, Percival W J and Raccanelli A 2012 Mon. Not. R. Astron. Soc. 420 2102
[18] Reid B A et al 2012 Mon. Not. R. Astron. Soc. 426 2179
[19] Beutler F et al 2012 Mon. Not. R. Astron. Soc. 423 3430
[20] Torre S D L et al 2013 Astron. Astrophys. 557 A54
[21] Weinberg D H 2013 Phys. Rep. 530 87
[22] Heymans C et al 2013 Mon. Not. R. Astron. Soc. 432 2433
[23] Bridle S and King L 2007 New J. Phys. 9 444
[24] Hirata C M and Seljak U 2004 Phys. Rev. D 70 063526
[25] Chang B and Xu L 2014 Phys. Rev. D 90 027301
[26] Xu L 2013 Phys. Rev. D 88 127301
[28] Betoule M et al 2014 Astron. Astrophys. 568 A22
[29] Beutler F 2011 Mon. Not. R. Astron. Soc. 416 3017
[30] Padmanabhan N et al 2012 Mon. Not. R. Astron. Soc. 427 2132
[31] Manera M et al 2013 Mon. Not. R. Astron. Soc. 428 1036
[32] Ma C P and Bertschinger E 1995 Astrophys. J. 455 7
[33] Lewis A and Bridle S 2002 Phys. Rev. D 66 103511
[34] Humphreys E M L et al 2013 Astrophys. J. 775 13
Related articles from Frontiers Journals
[1] Jun Wang, Li-Jia Cao. Gravitational constant in f(R) theories of gravity with non-minimal coupling between matter and geometry[J]. Chin. Phys. Lett., 2018, 35(12): 059801
[2] Ya-Bo Wu, Xue Zhang, Bo-Hai Chen, Nan Zhang, Meng-Meng Wu. Energy Conditions and Constraints on the Generalized Non-Local Gravity Model[J]. Chin. Phys. Lett., 2017, 34(7): 059801
[3] D. Aberkane, N. Mebarki, S. Benchikh. Viscous Modified Chaplygin Gas in Classical and Loop Quantum Cosmology[J]. Chin. Phys. Lett., 2017, 34(6): 059801
[4] Jie An, Bao-Rong Chang, Li-Xin Xu. Cosmic Constraints to the $w$CDM Model from Strong Gravitational Lensing[J]. Chin. Phys. Lett., 2016, 33(07): 059801
[5] He-Kun Li, Pu-Xun Wu, Hong-Wei Yu. Test of the Cosmic Transparency with the Baryon Acoustic Oscillation and Type Ia Supernova Data[J]. Chin. Phys. Lett., 2016, 33(05): 059801
[6] Si-Yu Wu, Ya-Bo Wu, Yue-Yue Zhao, Xue Zhang, Cheng-Yuan Zhang, Bo-Hai Chen. Consistency Conditions and Constraints on Generalized $f(R)$ Gravity with Arbitrary Geometry-Matter Coupling[J]. Chin. Phys. Lett., 2016, 33(03): 059801
[7] Khurshudyan M., Pasqua A., Sadeghi J., Farahani H.. Quintessence Cosmology with an Effective Λ-Term in Lyra Manifold[J]. Chin. Phys. Lett., 2015, 32(10): 059801
[8] ZHU Wen-Tao, WU Pu-Xun, YU Hong-Wei. Constraining the Generalized and Superfluid Chaplygin Gas Models with the Sandage–Loeb Test[J]. Chin. Phys. Lett., 2015, 32(5): 059801
[9] WU Ya-Bo, TONG Hai-Dan, YANG Hao, LU Jian-Bo, ZHAO Yue-Yue, LU Jun-Wang, ZHANG Xue. Reconstruction of New Holographic Chaplygin Gas Model with Viscosity[J]. Chin. Phys. Lett., 2014, 31(2): 059801
[10] Bob Osano. The Decoupling of Scalar-Modes from a Linearly Perturbed Dust-Filled Bianchi Type-I Model[J]. Chin. Phys. Lett., 2014, 31(1): 059801
[11] V. K. Shchigolev. Cosmology with an Effective Λ-Term in Lyra Manifold[J]. Chin. Phys. Lett., 2013, 30(11): 059801
[12] LI Hui, ZHANG Hong-Sheng, ZHANG Yi. A Generalized Semi-Holographic Universe[J]. Chin. Phys. Lett., 2013, 30(8): 059801
[13] WU Ya-Bo, ZHAO Yue-Yue, LU Jian-Bo, LI Jian, ZHANG Wen-Xin, CHANG Hong. The Generalized f(R) Model with Coupling in 5D Spacetime[J]. Chin. Phys. Lett., 2013, 30(6): 059801
[14] M. Farasat Shamir, Adil Jhangeer, and Akhlaq Ahmad Bhatti. Conserved Quantities in f(R) Gravity via Noether Symmetry[J]. Chin. Phys. Lett., 2012, 29(8): 059801
[15] YADAV Anil Kumar. Cosmological Constant Dominated Transit Universe from the Early Deceleration Phase to the Current Acceleration Phase in Bianchi-V Spacetime[J]. Chin. Phys. Lett., 2012, 29(6): 059801
Full text