Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 059701    DOI: 10.1088/0256-307X/32/5/059701
Effects of Gravitational Correction on Neutrino Emission from Neutron Stars
DING Wen-Bo1**, E Shan-Shan1, YU Zi2, ZHANG Qi1, QI Zhan-Qiang1
1School of Mathematics and Physics, Bohai University, Jinzhou 121000
2College of Science, Nanjing Forestry University, Nanjing 210037
Cite this article:   
DING Wen-Bo, E Shan-Shan, YU Zi et al  2015 Chin. Phys. Lett. 32 059701
Download: PDF(598KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considering the gravitational correction through introduction of weakly interacting light vector U bosons, not only the equation of state (EoS) of the neutron star matter, but also the cooling properties of neutron stars may be changed. In this work, effects of gravitational correction on neutrino emission and cooling of neutron stars in the matter with neutrons, protons, electrons, muons, Δ? and Δ0 are studied by the relativistic mean field theory and the related cooling theory. The results show that the effects are sensitive to the ratio of coupling strength to mass squared of U bosons, defined as gU. With increasing gU, the radial region where direct Urca process of nucleons can be allowed in a neutron star with the fixed mass becomes narrower, while the neutrino emissivity is somewhat higher. Moreover, the gravitational correction suppresses the effects of Δ? on neutrino emission. The gravitational correction leads the star to cool faster, and the higher the gU is, the faster the star cools.
Received: 26 December 2014      Published: 01 June 2015
PACS:  97.60.Jd (Neutron stars)  
  95.30.Cq (Elementary particle processes)  
  26.60.Dd (Neutron star core)  
  26.60.Kp (Equations of state of neutron-star matter)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
E Shan-Shan
QI Zhan-Qiang
[1] Fayet P 2010 Phys. Rev. D 81 054025
[2] Zhu S H 2007 Phys. Rev. D 75 115004
[3] Hoyle C D 2003 Nature 421 899
[4] DeDeo S and Psaltis D 2008 Phys. Rev. D 78 064013
[5] Geraci A A, Papp S B and Kitching J 2010 Phys. Rev. Lett. 105 101101
[6] Lucchesi D M and Person R 2010 Phys. Rev. Lett. 105 231103
[7] Wen D H, Li B A and Chen L W 2009 Phys. Rev. Lett. 103 211102
[8] Krivoruchenko M I, ?imkovic F and Faessler A 2009 Phys. Rev. D 79 125023
[9] Zhang D R, Yin P L, Wang W et al 2011 Phys. Rev. C 83 035801
[10] Zheng H and Chen L W 2012 Phys. Rev. D 85 043013
[11] Demorest P B, Pennucci T, Ransom S M et al 2010 Nature 467 1081
[12] Ding W B, Liu G Z, Zhu M F et al 2008 Chin. Phys. Lett. 25 458
[13] Ding W B, Li Y and Mi G 2012 Chin. Phys. Lett. 29 092601
[14] Fujii Y 1971 Nature 234 5
[15] Lattimer J M, Pethick C J and Prakash M 1991 Phys. Rev. Lett. 66 2701
[16] Barret D, Olive J F and Miller M C 2005 Mon. Not. R. Astron. Soc. 361 855
[17] ?zel F 2006 Nature 441 1115
Related articles from Frontiers Journals
[1] Wen-Bo Ding, Zi Yu, Yan Xu, Chun-Jian Liu, Tmurbagan Bao. Neutrino Emission and Cooling of Dark-Matter-Admixed Neutron Stars[J]. Chin. Phys. Lett., 2019, 36(4): 059701
[2] Shuang-Qiang Wang, Na Wang, De-Hua Wang, Lun-Hua Shang. An Explanation for the Undetection of Radio Pulsar in Supernova 1987A[J]. Chin. Phys. Lett., 2017, 34(12): 059701
[3] Yi-Yan Yang, Li Chen, Rong-Feng Linghu, Li-Yun Zhang, Ali TAANI. Constraints on Estimation of Radius of Double Pulsar PSR J0737-3039A and Its Neutron Star Nuclear Matter Composition[J]. Chin. Phys. Lett., 2017, 34(12): 059701
[4] Yan Xu, Xiu-Lin Huang, Cheng-Zhi Liu, Tmurbagan Bao, Guang-Zhou Liu. Effects of Tensor Couplings on Nucleonic Direct URCA Processes in Neutron Star Matter[J]. Chin. Phys. Lett., 2016, 33(09): 059701
[5] H. Panahi, R. Monadi, I. Eghdami. A Gaussian Model for Anisotropic Strange Quark Stars[J]. Chin. Phys. Lett., 2016, 33(07): 059701
[6] QI Bin, ZHANG Nai-Bo, WANG Shou-Yu, SUN Bao-Yuan. Hyperon Effects on the Spin Parameter of Rotating Neutron Stars[J]. Chin. Phys. Lett., 2015, 32(11): 059701
[7] Marina-Aura Dariescu, Ciprian Dariescu, Denisa-Andreea Mihu. Tunneling of Relativistic Bosons Induced by Magnetic Fields in the Magnetar's Crust[J]. Chin. Phys. Lett., 2015, 32(10): 059701
[8] LI Ang. Glitch Crisis or Not: a Microscopic Study[J]. Chin. Phys. Lett., 2015, 32(07): 059701
[9] PAN Yuan-Yue, WANG Na, ZHANG Cheng-Min. The Relation between the Magnetic Field and Spin Period of a Millisecond Pulsar[J]. Chin. Phys. Lett., 2013, 30(10): 059701
[10] WANG Hong-Yan, LIU Guang-Zhou, WU Yao-Rui, XU Yan, ZHU Ming-Feng, BAO Tmurbagan, ZHAO En-Guang. Bulk Properties of Hybrid Stars with the Color-Flavor Locked Quark Matter Core[J]. Chin. Phys. Lett., 2013, 30(6): 059701
[11] YAN Yan, CAO Jing, LUO Xin-Lian, SUN Wei-Min, ZONG Hong-Shi. Quark Stars Investigated using an Improved Quasi-Particle Model[J]. Chin. Phys. Lett., 2012, 29(10): 059701
[12] DING Wen-Bo, LI Ying, MI Geng. Influences of Both Δ and Δ0 Particles on the Neutron Star Cooling[J]. Chin. Phys. Lett., 2012, 29(9): 059701
[13] CHEN Yan-Jun, YUAN Ye-Fei. Effects of the Recombination of Nucleons into α-Particles on the R-process in Proto-magnetar Wind[J]. Chin. Phys. Lett., 2012, 29(6): 059701
[14] XU Yan**,LIU Guang-Zhou,WANG Hong-Yan,DING Wen-Bo,ZHAO En-Guang. Influence of σ* and φ Mesons on Λ Hyperon 1S0 Superfluidity in Neutron Star Matter[J]. Chin. Phys. Lett., 2012, 29(5): 059701
[15] PI Chun-Mei, YANG Shu-Hua**, ZHENG Xiao-Ping . Extension of Radiative Viscosity to Superfluid Matter[J]. Chin. Phys. Lett., 2011, 28(10): 059701
Full text