Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 058401    DOI: 10.1088/0256-307X/32/5/058401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effects of Thermal Annealing on the Solvent Additive P3HT PC61BM Bulk Heterojunction Solar Cells
FAN Xing1,2, ZHAO Su-Ling1,2**, CHEN Yu3, ZHANG Jie3, YANG Qian-Qian1,2, GONG Wei1,2, XU Zheng1,2, XU Xu-Rong1,2
1Key Laboratory of Luminescence and Optical Information (Ministry of Education), Beijing Jiaotong University, Beijing 100044
2Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044
3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
Cite this article:   
FAN Xing, ZHAO Su-Ling, CHEN Yu et al  2015 Chin. Phys. Lett. 32 058401
Download: PDF(1289KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Effects of thermal annealing on the optical, electrical and structural properties of 3 vol% 1,8-diiodoctane added P3HT:PC61BM active layers are investigated, concerning the performance of the bulk heterojunction polymer solar cells by changing the heat temperature. The structure information of the active layer is analyzed by using the grazing incidence wide angle scattering diffraction combined with the optical microscope, light absorption, photoluminescence and the external quantum efficiency spectra. The relationship between the detail of morphology and the optical, electrical properties is investigated.
Received: 05 January 2015      Published: 01 June 2015
PACS:  84.60.Jt (Photoelectric conversion)  
  88.40.jr (Organic photovoltaics)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  68.55.-a (Thin film structure and morphology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/058401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/058401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Xing
ZHAO Su-Ling
CHEN Yu
ZHANG Jie
YANG Qian-Qian
GONG Wei
XU Zheng
XU Xu-Rong
[1] Tang C W 1986 Appl. Phys. Lett. 48 183
[2] Yu G and Heeger A J 1995 J. Appl. Phys. 78 4510
[3] Zhang Y, Wang H, Liu Z, Zou B, Duan C Y, Yang T, Zhang X J, Zheng C J and Zhang X H 2013 Appl. Phys. Lett. 102 163906
[4] Wang J, Ueda M and Higashihara T 2014 J. Polym. Sci. Part A: Polym. Chem. 52 1139
[5] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
[6] Kim Y, Cook S, Tuladhar S M, Choulis S A, Nelson J, Durrant J R, Bradley D D, Giles M, McCulloch I and Ha C S 2006 Nat. Mater. 5 197
[7] Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin P G, Kim Y, Anthopoulos T D, Stavrinou P N, Bradley D D and Nelson J 2008 Nat. Mater. 7 158
[8] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M and Heeger A J 2007 Science 317 222
[9] Li G L, He L J, Li J, Li X S, Liang S, Gao M M and Yuan H W 2013 Acta Phys. Sin. 62 197202 (in Chinese)
[10] Chen W B, Xu Z X, Li K, Chui Stephen S Y, Roy V A L, Lai P T and Che C M 2012 Chin. Phys. B 21 078401
[11] Deschler F, Riedel D, Ecker B, von Hauff E, Da Como E and MacKenzie R C 2013 Phys. Chem. Chem. Phys. 15 764
[12] Song T, Zhang F, Shen X, Zhang X, Zhu X and Sun B 2009 Appl. Phys. Lett. 95 233502
[13] Salleo A 2007 Mater. Today 10 38
[14] Bertho S, Janssen G, Cleij T J, Conings B, Moons W, Gadisa A, D'Haen J, Goovaerts E, Lutsen L, Manca J and Vanderzande D 2008 Sol. Energy Mater. Sol. Cells 92 753
[15] Verploegen E, Mondal R, Bettinger C J, Sok S, Toney M F and Bao Z 2010 Adv. Funct. Mater. 20 3519
[16] Ma W, Yang C, Gong X, Lee K and Heeger A J 2005 Adv. Funct. Mater. 15 1617
[17] Jo J, Kim S S, Na S I, Yu B K and Kim D Y 2009 Adv. Funct. Mater. 19 866
[18] Miller S, Fanchini G, Lin Y Y, Li C, Chen C W, Su W F and Chhowalla M 2008 J. Mater. Chem. 18 306
[19] Li G, Yao Y, Yang H, Shrotriya V, Yang G and Yang Y 2007 Adv. Funct. Mater. 17 1636
[20] Pivrikas A, Neugebauer H and Sariciftci N S 2011 Sol. Energy 85 1226
[21] Salim T, Wong L H, Br?uer B, Kukreja R, Foo Y L, Bao Z and Lam Y M 2011 J. Mater. Chem. 21 242
[22] Lee J K, Ma W L, Brabec C J, Yuen J, Moon J S, Kim J Y, Lee K, Bazan G C and Heeger A J 2008 J. Am. Chem. Soc. 130 3619
[23] De Sio A, Madena T, Huber R, Parisi J, Neyshtadt S, Deschler F, Da Como E, Esposito S and Von Hauff E 2011 Sol. Energy Mater. Sol. Cells 95 3536
[24] Yang S P, Wang T N, Shi J B, Zhang Y, Li X W and Fu G S 2013 Chin. Phys. Lett. 30 108401
[25] Vandewal K, Gadisa A, Oosterbaan W D, Bertho S, Banishoeib F, Van Severen I, Lutsen L, Cleij T J, Vanderzande D and Manca J V 2008 Adv. Funct. Mater. 18 2064
[26] Hallermann M, Da Como E, Feldmann J, Izquierdo M, Filippone S, Martín N, Jüchter S and Von Hauff E 2010 Appl. Phys. Lett. 97 023301
[27] Chabinyc M L 2008 Polym. Rev. 48 463
[28] Rivnay J, Mannsfeld S C B, Miller C E, Salleo A and Toney M F 2012 Chem. Rev. 112 5488
[29] Müller B P 2014 Adv. Mater. 26 7692
[30] Kayunkid N, Uttiya S and Brinkmann M 2010 Macromolecules 43 4961
[31] Wu T M, Blackwell J and Chvalun S N 1995 Macromolecules 28 7349
[32] Treat N D, Brady M A, Smith G, Toney M F, Kramer E J, Hawker C J and Chabinyc M L 2011 Adv. Energy Mater. 1 82
[33] Chen H Y, Yang H, Yang G, Sista S, Zadoyan R, Li G and Yang Y 2009 J. Phys. Chem. C 113 7946
[34] Brown P, Thomas D, K?hler A, Wilson J, Kim J S, Ramsdale C, Sirringhaus H and Friend R 2003 Phys. Rev. B 67 195414
[35] Ecker B, Nolasco J C, Pallarés J, Marsal L F, Posdorfer J, Parisi J and von Hauff E 2011 Adv. Funct. Mater. 21 2705
[36] Xu B and Holdcroft S 1993 Macromolecules 26 4457
[37] Zhokhavets U, Erb T, Hoppe H, Gobsch G and Serdar Sariciftci N 2006 Thin Solid Films 496 679
[38] Jamieson F C, Domingo E B, McCarthy-Ward T, Heeney M, Stingelin N and Durrant J R 2012 Chem. Sci. 3 485
[39] Sun B, Zou G, Shen X and Zhang X 2009 Appl. Phys. Lett. 94 233504
[40] Deschler F, De Sio A, Von Hauff E, Kutka P, Sauermann T, Egelhaaf H J, Hauch J and Da Como E 2012 Adv. Funct. Mater. 22 1461
Related articles from Frontiers Journals
[1] Zihan Qu, Fei Ma, Yang Zhao, Xinbo Chu, Shiqi Yu, and Jingbi You. Updated Progresses in Perovskite Solar Cells[J]. Chin. Phys. Lett., 2021, 38(10): 058401
[2] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 058401
[3] Gen Yue, Zhen Deng, Sen Wang, Ran Xu, Xinxin Li, Ziguang Ma, Chunhua Du, Lu Wang, Yang Jiang, Haiqiang Jia, Wenxin Wang, Hong Chen. Absorption Enhancement of Silicon Solar Cell in a Positive-Intrinsic-Negative Junction[J]. Chin. Phys. Lett., 2019, 36(5): 058401
[4] Wan-Ying Zhao, Zhi-Liang Ku, Li-Ping Lv, Xian Lin, Yong Peng, Zuan-Ming Jin, Guo-Hong Ma, Jian-Quan Yao. Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites[J]. Chin. Phys. Lett., 2019, 36(2): 058401
[5] Rui Wu, Jun-Ling Wang, Gang Yan, Rong Wang. Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(4): 058401
[6] Hui-Jie Yan, Zhi-Liang Ku, Xue-Feng Hu, Wan-Ying Zhao, Min-Jian Zhong, Qi-Biao Zhu, Xian Lin, Zuan-Ming Jin, Guo-Hong Ma. Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH$_{3}$NH$_{3}$PbI$_{3}$ Perovskites[J]. Chin. Phys. Lett., 2018, 35(2): 058401
[7] Jun-Ling Wang, Tian-Cheng Yi, Yong Zheng, Rui Wu, Rong Wang. Temperature-Dependent Photoluminescence Analysis of 1.0MeV Electron Irradiation-Induced Nonradiative Recombination Centers in n$^{+}$–p GaAs Middle Cell of GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(7): 058401
[8] Du-Xiang Wang, Ming-Hui Song, Jing-Feng Bi, Wen-Jun Chen, Sen-Lin Li, Guan-Zhou Liu, Ming-Yang Li, Chao-Yu Wu. Enhanced Efficiency of Metamorphic Triple Junction Solar Cells for Space Applications[J]. Chin. Phys. Lett., 2017, 34(6): 058401
[9] Yong Zheng, Tian-Cheng Yi, Jun-Ling Wang, Peng-Fei Xiao, Rong Wang. Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements[J]. Chin. Phys. Lett., 2017, 34(2): 058401
[10] Wen-Gui Wang, Li Zhu, Yu-Yan Weng, Wen Dong. TiO$_{2}$-Loaded WO$_{3}$ Composite Films for Enhancement of Photocurrent Density[J]. Chin. Phys. Lett., 2017, 34(2): 058401
[11] Jun-Na Zhang, Lei Wang, Zhun Dai, Xun Tang, You-Bo Liu, De-Ren Yang. The 18.3% Silicon Solar Cells with Nano-Structured Surface and Rear Emitter[J]. Chin. Phys. Lett., 2017, 34(2): 058401
[12] Yong Zheng, Tian-Cheng Yi, Peng-Fei Xiao, Juan Tang, Rong Wang. Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle Cells for Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2016, 33(05): 058401
[13] Talib Hussain, Hui-Qi Ye, Dong Xiao. Excess Carrier Lifetime Improvement in c-Si Solar Cells by YAG:Ce$^{3+}$-Yb$^{3+}$[J]. Chin. Phys. Lett., 2016, 33(05): 058401
[14] SUN Ding, GE Yang, XU Sheng-Zhi, ZHANG Li, LI Bao-Zhang, WANG Guang-Cai, WEI Chang-Chun, ZHAO Ying, ZHANG Xiao-Dan. Improvement of the Open Circuit Voltage of CZTSe Thin-Film Solar Cells by Surface Sulfurization Using SnS[J]. Chin. Phys. Lett., 2015, 32(12): 058401
[15] WANG Fei-Long, DAI Bin, LIU Xue-Feng, SUN Yi-Ning, SUN Zhi-Bin, YU Qiang, ZHAI Guang-Jie. Containerless Heating Process of a Deeply Undercooled Metal Droplet by Electrostatic Levitation[J]. Chin. Phys. Lett., 2015, 32(11): 058401
Viewed
Full text


Abstract