Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 058103    DOI: 10.1088/0256-307X/32/5/058103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Structure and Strain Properties of GaN Films Grown on Si (111) Substrates with AlxGa1?xN/AlyGa1?yN Superlattices
PAN Lei, NI Jin-Yu**, YU Xin-Xin, DONG Xun, PENG Da-Qing, LI Chuan-Hao, LI Zhong-Hui, CHEN Tang-Sheng
Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016
Cite this article:   
PAN Lei, NI Jin-Yu, YU Xin-Xin et al  2015 Chin. Phys. Lett. 32 058103
Download: PDF(1671KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract GaN films with an AlxGa1?xN/AlyGa1?yN superlattice (SL) buffer layer are grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The structure and strain properties of the samples are studied by optical microscopy, Raman spectroscopy, x-ray diffractometry and atomic force microscopy. The results show that the strain status and crystalline quality of the GaN layers are strongly dependent on the difference of the Al composition between AlxGa1?xN barriers and AlyGa1?yN wells in the SLs. With a large Al composition difference, the GaN film tends to generate cracks on the surface due to the severe relaxation of the SLs. Otherwise, when using a small Al composition difference, the crystalline quality of the GaN layer degrades due to the poor function of the SLs in filtering dislocations. Under an optimized condition that the Al composition difference equals 0.1, the crack-free and compressive strained GaN film with an improved crystalline quality is achieved. Therefore, the AlxGa1?xN/AlyGa1?yN SL buffer layer is a promising buffer structure for growing thick GaN films on Si substrates without crack generation.
Received: 28 October 2014      Published: 01 June 2015
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.05.Ea (III-V semiconductors)  
  82.80.Gk (Analytical methods involving vibrational spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/058103       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/058103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PAN Lei
NI Jin-Yu
YU Xin-Xin
DONG Xun
PENG Da-Qing
LI Chuan-Hao
LI Zhong-Hui
CHEN Tang-Sheng
[1] Arulkumaran S, Vicknesh S, Ing N G, Selvaraj S L and Egawa T 2011 Appl. Phys. Express 4 084101
[2] Medjdoub F, Grimbert B, Ducatteau D and Rolland N 2013 Appl. Phys. Express 6 044001
[3] Roder C, Einfeldt S, Figge S and Hommel D 2005 Phys. Rev. B 72 085218
[4] Krost A and Dadgar A 2002 Mater. Sci. Eng. B 93 77
[5] Dadgar A, Poschenrieder M, Bl?sing J, Fehse K, Diez A and Krost A 2002 Appl. Phys. Lett. 80 3670
[6] Lee S J, Bak G H, Jeon S R, Lee S H, Kim S M, Jung S H, Lee C R, Lee I H, Leem S J and Baek J H 2008 Jpn. J. Appl. Phys. 47 3070
[7] Cong G, Lu Y, Peng W, Lin X, Wang X and Wang Z 2005 J. Cryst. Growth 276 381
[8] Able A, Wegscheider W, Engl K and Zweck J 2005 J. Cryst. Growth 276 415
[9] Yang Y B, Xiang P, Liu M G, Chen W J, He Z Y, Han X B, Ni Y Q, Yang F, Yao Y, Wu Z S, Liu Y and Zhang B J 2013 J. Cryst. Growth 376 23
[10] Yu X X, Ni J Y, Li Z H, Kong C, Zhou J J, Dong X, Pan L, Kong Y C and Chen T S 2014 Chin. Phys. Lett. 31 037201
[11] Shen X Q, Takahashi T, Kawashima H, Ide T and Shimizu M 2012 Appl. Phys. Lett. 101 031912
[12] Sugahara T, Lee J S and Qhtsuka K 2004 Jpn. J. Appl. Phys. 43 L1595
[13] Feltin E, Beaumont B, Laügt M, Mierry P, Vennéguès P, Lahrèche H, Leroux M and Gibart P 2001 Appl. Phys. Lett. 79 3230
[14] Nikishin S A, Faleev N N, Antipov V G, Francoeur S, Peralta L G, Seryogin G A, Temkin H, Prokofyeva T I, Holtz M and Chu S N G 1999 Appl. Phys. Lett. 75 2073
[15] Jang S H and Lee C R 2003 J. Cryst. Growth 253 64
[16] Kim D W and Lee C R 2006 J. Cryst. Growth 286 235
[17] Piotr P, Claude J C, Jean P I, Alfonso S M, Izabella G and Alain P 1992 Phys. Rev. B 45 83
[18] Komiyama J, Abe Y, Suzuki S and Nakannishi H 2006 J. Appl. Phys. 100 033519
[19] Tripathy S, Chua S J, Chen P and Miao Z L 2002 J. Appl. Phys. 92 3503
[20] Amano H, Iwaya M, Kashima T, Katsuragawa M, Akasaki I, Han J, Hearne S, Floro J A, Chason E and Figiel J 1998 Jpn. J. Appl. Phys. 37 L1540
[21] Heinke H, M?ller M O, Hommel D and Landwehr G 1994 J. Cryst. Growth 135 41
[22] Einfeldt S, Heinke H, Kirchner V and Hommel D 2001 J. Appl. Phys. 89 2160
Related articles from Frontiers Journals
[1] Jianguo Zhao, Kai Chen, Maogao Gong, Wenxiao Hu, Bin Liu, Tao Tao, Yu Yan, Zili Xie, Yuanyuan Li, Jianhua Chang, Xiaoxuan Wang, Qiannan Cui, Chunxiang Xu, Rong Zhang, and Youdou Zheng. Epitaxial Growth and Characteristics of Nonpolar $a$-Plane InGaN Films with Blue-Green-Red Emission and Entire In Content Range[J]. Chin. Phys. Lett., 2022, 39(4): 058103
[2] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 058103
[3] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 058103
[4] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 058103
[5] Yi-Yi Gu, Yi-Fan Wang, Jing Xia, Xiang-Min Meng. Chemical Vapor Deposition of Two-Dimensional PbS Nanoplates for Photodetection[J]. Chin. Phys. Lett., 2020, 37(4): 058103
[6] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 058103
[7] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 058103
[8] Ying-Xi Niu, Xiao-Yan Tang, Ren-Xu Jia, Ling Sang, Ji-Chao Hu, Fei Yang, Jun-Min Wu, Yan Pan, Yu-Ming Zhang. Influence of Triangle Structure Defect on the Carrier Lifetime of the 4H-SiC Ultra-Thick Epilayer[J]. Chin. Phys. Lett., 2018, 35(7): 058103
[9] Ze-Yang Ren, Jin-Feng Zhang, Jin-Cheng Zhang, Sheng-Rui Xu, Chun-Fu Zhang, Kai Su, Yao Li, Yue Hao. Growth and Characterization of the Laterally Enlarged Single Crystal Diamond Grown by Microwave Plasma Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(7): 058103
[10] Zhi-Gang Wang, Fei Pang. Poisoning of MoO$_{3}$ Precursor on Monolayer MoS$_{2}$ Nanosheets Growth by Tellurium-Assisted Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2017, 34(8): 058103
[11] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 058103
[12] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 058103
[13] Yang Zhang, Qing Wang, Xiao-Bin Zhang, Na Peng, Zhen-Qi Liu, Bing-Zhen Chen, Shan-Shan Huang, Zhi-Yong Wang. Application of AlGaInP with Sb Incorporation in Lattice-Matched 5-Junction Tandem Solar Cells[J]. Chin. Phys. Lett., 2017, 34(2): 058103
[14] Ying Zhao, Sheng-Rui Xu, Zhi-Yu Lin, Jin-Cheng Zhang, Teng Jiang, Meng-Di Fu, Jia-Duo Zhu, Qin Lu, Yue Hao. C-Implanted N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(12): 058103
[15] Guo-Cai Dong, D. V. Baarle, J. Frenken, Qi-Wen Tang. Graphene/Rh(111) Structure Studied Using In-Situ Scanning Tunneling Microscopy[J]. Chin. Phys. Lett., 2016, 33(11): 058103
Viewed
Full text


Abstract