Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 047304    DOI: 10.1088/0256-307X/32/4/047304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Thermoelectric Transport by Surface States in Bi2Se3-Based Topological Insulator Thin Films
LI Long-Long1**, XU Wen1,2
1Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
2Department of Physics, Yunnan University, Kunming 650091
Cite this article:   
LI Long-Long, XU Wen 2015 Chin. Phys. Lett. 32 047304
Download: PDF(530KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi2Se3 at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi2Se3-based TITFs as high-performance TE materials and devices.

Received: 23 January 2015      Published: 30 April 2015
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  74.25.fg (Thermoelectric effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/047304       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/047304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Long-Long
XU Wen

[1] Goldsmid H J 1986 Electron. Refrigeration (London: Pion) p 10
[2] Tritt T M and Subramanian M A 2006 MRS Bull. 31 188
[3] Balandin A A and Wang K L 1998 Phys. Rev. B 58 1544
[4] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[5] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[6] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043
[7] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[8] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[9] Checkelsky J G, Hor Y S, Cava R J and Ong N P 2011 Phys. Rev. Lett. 106 196801
[10] Steinberg H, Laloe J B, Fatemi V, Moodera J S and Jarillo-Herrero P 2011 Phys. Rev. B 84 233101
[11] Xiu F, He L, Wang Y, Cheng L, Chang L T, Lang M, Huang G, Kou X, Zhou Y, Jiang X, Chen Z, Zou J, Shailos A and Wang K L 2011 Nat. Nanotechnol. 6 216
[12] Wang Y, Xiu F, Cheng L, He L, Lang M, Tang J, Kou X, Yu X, Jiang X, Chen Z, Zou J and Wang K L 2012 Nano Lett. 12 1170
[13] Hong S S, Cha J J, Kong D and Cui Y 2012 Nat. Commun. 3 757
[14] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[15] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[16] Peng H, Lai K, Kong D, Meister S, Chen Y, Qi X L, Zhang S C, Shen Z X and Cui Y 2010 Nat. Mater. 9 225
[17] Goyal V, Teweldebrhan D and Balandina A A 2010 Appl. Phys. Lett. 97 133117
[18] Linder J, Yokoyama T and Sudbo A 2009 Phys. Rev. B 80 205401
[19] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C and Xue Q K 2010 Nat. Phys. 6 584
[20] Bansal N, Kim Y S, Brahlek M, Edrey E and Oh S 2012 Phys. Rev. Lett. 109 116804
[21] Li L L and Xu W 2014 Appl. Phys. Lett. 105 063503
[22] Mahan G D and Sofo J 1996 Proc. Natl. Acad. Sci. USA 93 7436
[23] Jonson M and Mahan G D 1980 Phys. Rev. B 21 4223
[24] Humphrey T E and Linke H 2005 Phys. Rev. Lett. 94 096601

Related articles from Frontiers Journals
[1] Ruiling Gao, Chao Liu, Le Fang, Bixia Yao, Wei Wu, Qiling Xiao, Shunbo Hu, Yu Liu, Heng Gao, Shixun Cao, Guangsheng Song, Xiangjian Meng, Xiaoshuang Chen, and Wei Ren. Two-Dimensional Electron Gas in MoSi$_{2}$N$_{4}$/VSi$_{2}$N$_{4}$ Heterojunction by First Principles Calculation[J]. Chin. Phys. Lett., 2022, 39(12): 047304
[2] Yu Zhang, Qingyun Zhang, Youqi Ke, and Ke Xia. Giant Influence of Clustering and Anti-Clustering of Disordered Surface Roughness on Electronic Tunneling[J]. Chin. Phys. Lett., 2022, 39(8): 047304
[3] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 047304
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 047304
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 047304
[6] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 047304
[7] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 047304
[8] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 047304
[9] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 047304
[10] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 047304
[11] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 047304
[12] Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang , Shi-Jie Sun , Yong Zhang , Wei Xiong , Xing-Yue Wang , Jian-Chen Lu, and Jin-Ming Cai . Topological-Defect-Induced Superstructures on Graphite Surface[J]. Chin. Phys. Lett., 2021, 38(2): 047304
[13] Chunyan Liao, Yahui Jin, Wei Zhang, Ziming Zhu, and Mingxing Chen. Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor[J]. Chin. Phys. Lett., 2020, 37(10): 047304
[14] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 047304
[15] Meihua Liu , Zhangwei Huang , Kuanchang Chang , Xinnan Lin , Lei Li , and Yufeng Jin. Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology[J]. Chin. Phys. Lett., 2020, 37(9): 047304
Viewed
Full text


Abstract