Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 040303    DOI: 10.1088/0256-307X/32/4/040303
GENERAL |
Entanglement-Enhanced Two-Photon Delocalization in a Coupled-Cavity Array
TANG Shi-Qing, YUAN Ji-Bing, WANG Xin-Wen, KUANG Le-Man**
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081
Cite this article:   
TANG Shi-Qing, YUAN Ji-Bing, WANG Xin-Wen et al  2015 Chin. Phys. Lett. 32 040303
Download: PDF(674KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the transport properties of two entangled photons which are initially injected into two nearest-neighbor coupling cavities in an one-dimensional coupled-cavity array (CCA). It is found that photonic transport dynamics in the two-photon CCA exhibits the entanglement-enhanced two-photon delocalization phenomenon. It is shown that the CCA can realize the localization-to-delocalization transition for two entangled photons.
Received: 02 February 2015      Published: 30 April 2015
PACS:  03.67.-a (Quantum information)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  37.30.+i (Atoms, molecules, andions incavities)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/040303       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/040303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Shi-Qing
YUAN Ji-Bing
WANG Xin-Wen
KUANG Le-Man
[1] Illuminati F 2006 Nat. Phys. 2 803
[2] Greentree A D et al 2006 Nat. Phys. 2 856
[3] Hartmann M J et al 2006 Nat. Phys. 2 849
[4] Hartmann M J et al 2007 Phys. Rev. Lett. 99 160501
[5] Hartmann M J et al 2008 Laser Photon. Rev. 2 527
[6] Tomadin A and Fazio R 2010 J. Opt. Soc. Am. B 27 130
[7] Houck A, Tureci H and Koch J 2012 Nat. Phys. 8 292
[8] Schmidt S and Koch J 2013 Ann. Phys. 525 395
[9] Mlmeida G M A et al 2013 Phys. Rev. A 87 033804
[10] Lombardo F et al 2014 Phys. Rev. A 89 053826
[11] Zhong Z R 2013 Chin. Phys. Lett. 30 080303
[12] Hai L et al 2014 Chin. Phys. B 23 024202
[13] Xu D Z et al 2010 Sci. Chin. Ser. G 53 1234
[14] Yan C H, Jia W Z and Wei L F 2014 Phys. Rev. A 89 033819
[15] Wang Z H et al 2014 Phys. Rev. A 89 053813
[16] Huang J F, Liao J Q and Sun C P 2013 Phys. Rev. A 87 023822
[17] Liao J Q et al 2009 Phys. Rev. A 80 014301
[18] Cheng M T, Song Y Y and Yu L B 2012 Chin. Phys. Lett. 29 054211
[19] Zhou T, Zang X F and Chen J 2014 Chin. Phys. Lett. 31 070301
[20] Yang Z B et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 085506
[21] Angelakis D G et al 2007 Phys. Rev. A 76 031805(R)
[22] Zhou L et al 2007 Phys. Rev. A 76 012313
[23] Hu F M et al 2007 Phys. Rev. A 76 013819
[24] Zhou L et al 2008 Phys. Rev. A 77 013831
[25] Ogden C D et al 2008 Phys. Rev. A 78 063805
[26] Makin M I et al 2009 Phys. Rev. A 80 043842
[27] Bose S et al 2007 J. Mod. Opt. 54 2307
[28] Quach J et al 2009 Phys. Rev. A 80 063838
[29] Paternostro M et al 2009 New J. Phys. 11 013059
[30] Longo P et al 2010 Phys. Rev. Lett. 104 023602
[31] Gong Z R et al 2008 Phys. Rev. A 78 053806
[32] Shi T and Sun C P 2009 Phys. Rev. B 79 205111
[33] Liao J Q et al 2010 Phys. Rev. A 81 042304
[34] Zhou L et al 2013 Phys. Rev. Lett. 111 103604
[35] Lu J et al 2014 Phys. Rev. A 89 013805
[36] Wallraff A et al 2004 Nature 431 162
[37] Hennessy K et al 2007 Nature 445 896
[38] Faraon A et al 2008 Nat. Phys. 4 859
[39] Rai A et al 2008 Phys. Rev. A 78 042304
[40] Agarwal G S 2013 Quantum Optics (New York: Cambridge University Press)
[41] Wootters W K 1998 Phys. Rev. Lett. 80 2245
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 040303
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 040303
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 040303
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 040303
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 040303
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 040303
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 040303
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 040303
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 040303
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 040303
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 040303
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 040303
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 040303
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 040303
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 040303
Viewed
Full text


Abstract