Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 037301    DOI: 10.1088/0256-307X/32/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
High-Performance In0.23Ga0.77As Channel MOSFETs with High Current Ratio Ion/Ioff Grown on Semi-insulating GaAs Substrates by MOCVD
KONG Xiang-Ting1, ZHOU Xu-Liang1, LI Shi-Yan1, QIAO Li-Jun1, LIU Hong-Gang2, WANG Wei1, PAN Jiao-Qing1**
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Microwave Device and IC Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
KONG Xiang-Ting, ZHOU Xu-Liang, LI Shi-Yan et al  2015 Chin. Phys. Lett. 32 037301
Download: PDF(828KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate high-performance In0.23Ga0.77As channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with Ion/Ioffhigh on-current to off-current (Ion/Ioff) ratio grown on semi-insulating GaAs wafers by metal-organic chemical vapor deposition (MOCVD). The 2 μm channel-length devices exhibit a peak extrinsic transconductance of 150 mS/mm and a drain current up to 500 mA/mm. The maximum effective mobility is 1680 cm2/Vs extracted by the split CV method. Furthermore, the Ion/Ioff ratio is significantly improved from approximately 4.5×103 up to approximately 4.32×104 by controlling the etch thickness of In0.49Ga0.51P. The high drain current and high Ion/Ioff ratio of the In0.23Ga0.77As channel MOSFETs are achieved due to the high effective mobility and the low gate leakage current density.
Published: 26 February 2015
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
  71.55.Eq (III-V semiconductors)  
  77.55.D-  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/037301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/037301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KONG Xiang-Ting
ZHOU Xu-Liang
LI Shi-Yan
QIAO Li-Jun
LIU Hong-Gang
WANG Wei
PAN Jiao-Qing
[1] Luo G L, Yang T H, Chang E Y, Chang C Y and Chao K A 2003 Jpn. J. Appl. Phys. 42 L517
[2] Hsieh Y C, Chang E Y, Luo G L, Pilkuhn M H, Yang J Y, Chung H W and Chang C Y 2007 Appl. Phys. Lett. 90 083507
[3] Chang E Y, Huang J C, Lin Y C, Hsieh Y C and Chang C Y 2008 Jpn. J. Appl. Phys. 47 7069
[4] Takagi S, Tezuka T, Irisawa T, Nakaharai S, Numata T, Usuda K, Sugiyama N, Shichijo M, Nakane R and Sugahara S 2007 Solid-State Electron. 51 526
[5] Xuan Y, Wu Y Q, Lin H C, Shen T and Ye P D 2007 IEEE Electron Device Lett. 28 935
[6] Egard M, Ohlsson L, Borg B M, Lenrick F, Wallenberg R, Wernersson L and Lind E 2011 IEDM Tech. Dig. p 303
[7] Rajagopalan K, Abrokwah J, Droopad R and Passlack M 2006 IEEE Electron Device Lett. 27 959
[8] Wu Y Q, Xu M, Wang R S, Koybasi O and Ye P D 2009 IEDM Tech. Dig. p 323
[9] Terao R, Kanazawa T, Ikeda S, Yonai Y, Kato A and Miyamoto Y 2011 Appl. Phys. Express 4 054201
[10] Yonai Y, Kanazawa T, Ikeda D and Miyamoto Y 2011 IEDM Tech. Dig. p 13.3.1
[11] Xue F, Jiang A, Zhao H, Chen Y T, Wang Y Z, Zhou F and Lee J 2012 IEEE Electron Device Lett. 33 32
[12] Xuan Y, Lin H C, Ye D and Wilk W D 2006 Appl. Phys. Lett. 88 263518
[13] Xuan Y, Wu Y Q and Ye P D 2008 IEEE Electron Device Lett. 29 294
[14] Sato M, Zeimer U, Bugge F, Gramlich S and Weyers M 1997 Appl. Phys. Lett. 70 1134
[15] Chen C H, Larsen C A and Stringfellow G B 1987 Appl. Phys. Lett. 50 218
[16] Schlenker D, Miyamoto T, Chen Z, Koyama F and Iga K 2000 J. Cryst. Growth 209 27
[17] Takeuchi T, Chang Y L, Tandon A, Bour D, Corzine S, Twist R, Tan M and Luan H C 2002 Appl. Phys. Lett. 80 2445
Related articles from Frontiers Journals
[1] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 037301
[2] Wen-Lun Zhang. Improvement of Performance of HfS$_{2}$ Transistors Using a Self-Assembled Monolayer as Gate Dielectric[J]. Chin. Phys. Lett., 2019, 36(6): 037301
[3] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 037301
[4] Bin-Xu, Jing-Ping Xu, Lu Liu, Yong Su. Improvements of Interfacial and Electrical Properties for Ge MOS Capacitor with LaTaON Gate Dielectric by Optimizing Ta Content[J]. Chin. Phys. Lett., 2018, 35(7): 037301
[5] Zhao-Zhao Hou, Gui-Lei Wang, Jia-Xin Yao, Qing-Zhu Zhang, Hua-Xiang Yin. Improvement of Operation Characteristics for MONOS Charge Trapping Flash Memory with SiGe Buried Channel[J]. Chin. Phys. Lett., 2018, 35(5): 037301
[6] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 037301
[7] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 037301
[8] Can Li, Cong-Wei Liao, Tian-Bao Yu, Jian-Yuan Ke, Sheng-Xiang Huang, Lian-Wen Deng. Concise Modeling of Amorphous Dual-Gate In-Ga-Zn-O Thin-Film Transistors for Integrated Circuit Designs[J]. Chin. Phys. Lett., 2018, 35(2): 037301
[9] Zhao-Zhao Hou, Gui-Lei Wang, Jin-Juan Xiang, Jia-Xin Yao, Zhen-Hua Wu, Qing-Zhu Zhang, Hua-Xiang Yin. Improved Operation Characteristics for Nonvolatile Charge-Trapping Memory Capacitors with High-$\kappa$ Dielectrics and SiGe Epitaxial Substrates[J]. Chin. Phys. Lett., 2017, 34(9): 037301
[10] Sheng-Kai Wang, Lei Ma, Hu-Dong Chang, Bing Sun, Yu-Yu Su, Le Zhong, Hai-Ou Li, Zhi Jin, Xin-Yu Liu, Hong-Gang Liu. Positive Bias Temperature Instability Degradation of Buried InGaAs Channel nMOSFETs with InGaP Barrier Layer and Al$_{2}$O$_{3}$ Dielectric[J]. Chin. Phys. Lett., 2017, 34(5): 037301
[11] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 037301
[12] Yuan Liu, Kai Liu, Rong-Sheng Chen, Yu-Rong Liu, Yun-Fei En, Bin Li, Wen-Xiao Fang. Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors[J]. Chin. Phys. Lett., 2017, 34(1): 037301
[13] Yi-Tao He, Ming Qiao, Lu Li, Gang Dai, Bo Zhang, Zhao-Ji Li. A Lateral Regulator Diode with Field Plates for Light-Emitting-Diode Lighting[J]. Chin. Phys. Lett., 2016, 33(09): 037301
[14] Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, De-Zhao Yu, Xue-Feng Yu, Qi Guo. Hot-Carrier Effects on Total Dose Irradiated 65nm n-Type Metal-Oxide-Semiconductor Field-Effect Transistors[J]. Chin. Phys. Lett., 2016, 33(07): 037301
[15] Lan-Feng Tang, Hai Lu, Fang-Fang Ren, Dong Zhou, Rong Zhang, You-Dou Zheng, Xiao-Ming Huang,. Electrical Instability of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors under Ultraviolet Illumination[J]. Chin. Phys. Lett., 2016, 33(03): 037301
Viewed
Full text


Abstract