Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 026102    DOI: 10.1088/0256-307X/32/2/026102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene
ZHOU Xiang1, CHEN Ji2, GU Lin2, MIAO Ling2**
1Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures (Ministry of Education), and School of Physics and Technology, Wuhan University, Wuhan 430072
2School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
ZHOU Xiang, CHEN Ji, GU Lin et al  2015 Chin. Phys. Lett. 32 026102
Download: PDF(804KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the stability and performance of Li absorption on the composite structure (B80C72) of boron fullerene and graphene by first-principles calculations. Our results show that the Li storage capacity of the composite structure is estimated to be at least Li54B80C72, which is steady with improved dispersibility and electronic conductivity. The composite structure could have the potential application as the anode material of Li-ion batteries with high Li storage capacity and great mechanical property.
Published: 20 January 2015
PACS:  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
  81.07.Nb (Molecular nanostructures)  
  82.47.Aa (Lithium-ion batteries)  
  81.05.ue (Graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/026102       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/026102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Xiang
CHEN Ji
GU Lin
MIAO Ling
[1] Liu C et al 2010 Adv. Mater. 22 E28
[2] Chan C K et al 2008 Nat. Nanotechnol. 3 31
[3] Wu P et al 2010 J. Phys. Chem. C 114 22535
[4] Zhou G M et al 2010 Chem. Mater. 22 5306
[5] Wang H L et al 2010 J. Am. Chem. Soc. 132 13978
[6] Chou S L et al 2010 J. Phys. Chem. C 114 15862
[7] Zhao J J et al 2000 Phys. Rev. Lett. 85 1706
[8] Paek S M et al 2009 Nano Lett. 9 72
[9] Bhardwaj T et al 2010 J. Am. Chem. Soc. 132 12556
[10] Uthaisar C and Barone V 2010 Nano Lett. 10 2838
[11] Su J et al 2011 J. Phys. Chem. C 115 14469
[12] Wang D H et al 2009 ACS Nano 3 907
[13] Qiu Y C et al 2010 ACS Nano 4 6515
[14] Li Y M et al 2010 J. Phys. Chem. C 114 21770
[15] Wu Z S et al 2010 ACS Nano 4 5835
[16] Yoo E J et al 2008 Nano Lett. 8 2277
[17] Baruah T et al 2008 Phys. Rev. B 78 045408
[18] Yan Q B et al 2008 Phys. Rev. B 78 201401
[19] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[20] Soler J M et al 2002 J. Phys.: Condens. Matter 14 2745
[21] Pou P et al 2000 Phys. Rev. B 62 4309
[22] Perdew J P et al 1996 Phys. Rev. B 54 16533
[23] Perdew J P et al 1996 Phys. Rev. Lett. 77 3865
[24] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[25] Khantha M 2004 Phys. Rev. B 70 125422
Related articles from Frontiers Journals
[1] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 026102
[2] Dang-Xin Mao, Xiao-Gang Wang, Guo-Quan Zhou, Song-Wei Zeng, Liang Chen, Jun-Lang Chen, Chao-Qing Dai. Manipulating the Flipping of Water Dipoles in Carbon Nanotubes[J]. Chin. Phys. Lett., 2019, 36(10): 026102
[3] Nguyen Ngoc Hieu, Le Cong Nhan. Electronic Band Structure of Carbon Nanotubes with Kekule Structure[J]. Chin. Phys. Lett., 2013, 30(9): 026102
[4] XU Ning, DING Jian-Wen, CHEN Hong-Bo, MA Ming-Ming. Curvature and Hybridization Effects on the Persistent Current of a Carbon Nanotorus[J]. Chin. Phys. Lett., 2009, 26(7): 026102
Viewed
Full text


Abstract