Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 020701    DOI: 10.1088/0256-307X/32/2/020701
GENERAL |
Low Gate Voltage Operated Multi-emitter-dot H+ Ion-Sensitive Gated Lateral Bipolar Junction Transistor
YUAN Heng1,2**, ZHANG Ji-Xing2, ZHANG Chen1,2, ZHANG Ning1,2, XU Li-Xia1,2, DING Ming1,2, Patrick J. Clarke1
1Science and Technology on Inertial Laboratory, Beihang University, Beijing 100191
2School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191
Cite this article:   
YUAN Heng, ZHANG Ji-Xing, ZHANG Chen et al  2015 Chin. Phys. Lett. 32 020701
Download: PDF(672KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A low gate voltage operated multi-emitter-dot gated lateral bipolar junction transistor (BJT) ion sensor is proposed. The proposed device is composed of an arrayed gated lateral BJT, which is driven in the metal-oxide-semiconductor field-effect transistor (MOSFET)-BJT hybrid operation mode. Further, it has multiple emitter dots linked to each other in parallel to improve ionic sensitivity. Using hydrogen ionic solutions as reference solutions, we conduct experiments in which we compare the sensitivity and threshold voltage of the multi-emitter-dot gated lateral BJT with that of the single-emitter-dot gated lateral BJT. The multi-emitter-dot gated lateral BJT not only shows increased sensitivity but, more importantly, the proposed device can be operated under very low gate voltage, whereas the conventional ion-sensitive field-effect transistors cannot. This special characteristic is significant for low power devices and for function devices in which the provision of a gate voltage is difficult.
Published: 20 January 2015
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.10.Cm (Micromechanical devices and systems)  
  72.80.Cw (Elemental semiconductors)  
  85.30.-z (Semiconductor devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/020701       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/020701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Heng
ZHANG Ji-Xing
ZHANG Chen
ZHANG Ning
XU Li-Xia
DING Ming
Patrick J. Clarke
[1] Kang H, Lin L, Rong M and Chen X 2014 Talanta 129 296
[2] Chen M, Jin Y, Qu X, Jin Q and Zhao J 2014 Sens. Actuators B 192 399
[3] Liu Z, Li Y, Ding Y, Yang Z, Wang B, Li Y, Li T, Luo W, Zhu W, Xie J and Wang C 2014 Sens. Actuators B 197 200
[4] Lee C, Chiu Y and Wang X 2013 Sens. Actuators B 181 810
[5] Das A, Ko D H, Chen C H, Chang L B, Lai C S, Chu F C, Chow L and Lin R M 2014 Sens. Actuators B 205 199
[6] Lee C T and Chiu Y S 2014 Sens. Actuators B 203 790
[7] Kargar A 2009 Chin. Phys. Lett. 26 060701
[8] Sawada K, Shimada T, Ohshima T, Takao H and Ishida M 2004 Sens. Actuators B 98 69
[9] Werner C F, Takenaga S, Taki F, Sawada K and Schoning M J 2013 Sens. Actuators B 177 745
[10] Kang B S, Wang H T and Ren F 2007 Appl. Phys. Lett. 91 012110
[11] Dipalo M, Gao Z, Scharpf J, Pietzka C, Alomari M, Medjdoub F, Carlin J F, Grandjean N, Delage S and Kohn E 2009 Diamond Relat. Mater. 18 884
[12] Martinoia S, Grattarola M and Massobrio G 1992 Sens. Actuators B 7 561
[13] Kwon H C, Kwon D H, Sawada K and Kang S W 2008 IEEE Electron Device Lett. 29 1138
[14] Parke S A, Hu C and Ko P K 1993 IEEE Electron Device Lett. 14 234
[15] Yuan H, Kwon H C, Kang B H, Kang I M, Kwon D H and Kang S W 2013 Sens. Actuators B 181 44
[16] Yuan H, Kwon H C, Yeom S H, Kwon D H and Kang S W 2011 Biosens. Bioelectron. 28 434
[17] Yuan H, Kang B H, Lee J S, Jeong H M, Yeom S H, Kim K J, Kwon D H and Kang S W 2013 J. Semicond. Technol. Sci. 13 1
[18] Degrauwe M R, Leuthold O N and Vittoz E A 1985 IEEE J. Solid-State Circuits 20 1151
[19] Pan T W and Abidi A A 1989 IEEE J. Solid-State Circuits 24 951
[20] Yan Z, Deen M J and Malhi D S 1997 IEEE Electron Device Lett. 44 118
[21] Shin K S, Paek K K, Park J H and Kim T S 2007 IEEE Electron Device Lett. 28 581
[22] Kuhnhold R and Ryssel H 2000 Sens. Actuators B 68 307
[23] Dong Z, Wejinya U C and Chalamalasetty S N S 2012 Sens. Actuators A 173 293
Related articles from Frontiers Journals
[1] Shaochun Lin, Tian Tian, Peiran Yin, Pu Huang, Liang Zhang, and Jiangfeng Du. Micro-Gas Flow Induced Stochastic Resonance of a Nonlinear Nanomechanical Resonator[J]. Chin. Phys. Lett., 2021, 38(2): 020701
[2] Zhi Meng, Lei Shen, Zongwei Ma, Muhammad Adnan Aslam, Liqiang Xu, Xueli Xu, Wang Zhu, Long Cheng, Yuecheng Bian, Li Pi, Chun Zhou, Zhigao Sheng. Transient Photoconductivity in LaRhO$_{3}$ Thin Film[J]. Chin. Phys. Lett., 2019, 36(11): 020701
[3] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 020701
[4] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 020701
[5] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 020701
[6] Yu-Long Cao, Fei Yang, Dan Xu, Qing Ye, Hai-Wen Cai, Zu-Jie Fang. Phase-Sensitive Optical Time-Domain Reflectometer Based on a 120$^{\circ}$-Phase-Difference Michelson Interferometer[J]. Chin. Phys. Lett., 2016, 33(05): 020701
[7] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 020701
[8] ZHANG Yong, XIE Long-Zhen, LI Hai-Rong, WANG Peng, LIU Su, PENG Ying-Quan, ZHANG Miao. Facile Synthesis of Rose-Like NiO Nanoparticles and Their Ethanol Gas-Sensing Property[J]. Chin. Phys. Lett., 2015, 32(09): 020701
[9] XIAO Li-Ping, WANG Fa-Qiang, LIANG Rui-Sheng, ZOU Shi-Wei, HU Miao. A High-Sensitivity Refractive-Index Sensor Based on Plasmonic Waveguides Asymmetrically Coupled with a Nanodisk Resonator[J]. Chin. Phys. Lett., 2015, 32(07): 020701
[10] M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E. K. Girija, D. Pathinettam Padiyan. Rice Husk Templated Mesoporous ZnO Nanostructures for Ethanol Sensing at Room Temperature[J]. Chin. Phys. Lett., 2015, 32(07): 020701
[11] ZHANG Yun-Shan, QIAO Xue-Guang, SHAO Min, LIU Qin-Peng. In-Fiber Mach–Zehnder Interferometer Based on Waist-Enlarged Taper and Core-Mismatching for Strain Sensing[J]. Chin. Phys. Lett., 2015, 32(06): 020701
[12] FENG Zhao-Bin, LIU Duo. Enhanced Second-Order Resonance Actuation and Frequency Response Modulation of Microcantilever by Dual Coplanar Counter Electrodes[J]. Chin. Phys. Lett., 2013, 30(10): 020701
[13] HUANG Wan-Xia . Fano-Resonance of a Planar Metamaterial[J]. Chin. Phys. Lett., 2013, 30(7): 020701
[14] CHEN Zong-Qiang, QI Ji-Wei, CHEN Jing, LI Yu-Dong, HAO Zhi-Qiang, LU Wen-Qiang, XU Jing-Jun, SUN Qian . Fano Resonance Based on Multimode Interference in Symmetric Plasmonic Structures and its Applications in Plasmonic Nanosensors[J]. Chin. Phys. Lett., 2013, 30(5): 020701
[15] XU Bin-Zong, LIU Jie-Tao, HU Hai-Feng, WANG Li-Na, WEI Xin, SONG Guo-Feng. A High Sensitivity Index Sensor Based on Magnetic Plasmon Resonance in Metallic Grating with Very Narrow Slits[J]. Chin. Phys. Lett., 2013, 30(4): 020701
Viewed
Full text


Abstract