Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 114202    DOI: 10.1088/0256-307X/32/11/114202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High-Pulse-Energy All-Normal-Dispersion Yb-Doped Fiber Laser Based on Nonlinear Polarization Evolution
WANG Jun-Li1**, WANG Xue-Ling1, HE Bo-Rong1, WANG Yong-Gang3, ZHU Jiang-Feng1, WEI Zhi-Yi2
1School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119
Cite this article:   
WANG Jun-Li, WANG Xue-Ling, HE Bo-Rong et al  2015 Chin. Phys. Lett. 32 114202
Download: PDF(637KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report an all-normal-dispersion ytterbium fiber laser mode locked by nonlinear polarization evolution. With a 347-m-long all-fiber ring cavity, a pulse energy of 263 nJ at a repetition rate of 613 kHz is achieved, which is the highest per-pulse energy directly obtained from an all-fiber mode-locked laser doped by ytterbium ions. The compact and operation-robust laser yields a well-shaped spectrum centered at 1032 nm with a bandwidth (FWHM) of 4 nm, and the slope efficiency is as high as 27.5%. The proposed low-repetition-rate high-pulse-energy mode-locked fiber laser will be a promising seed for all-fiber chirped pulsed amplification systems.
Received: 09 June 2015      Published: 01 December 2015
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.60.Rn (Relaxation oscillations and long pulse operation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/114202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/114202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jun-Li
WANG Xue-Ling
HE Bo-Rong
WANG Yong-Gang
ZHU Jiang-Feng
WEI Zhi-Yi
[1] Liu X M, Cui Y D, Han D D, Yao X K and Sun Z P 2015 Sci. Rep. 5 09101
[2] Zian Ch T, Arman Z, Sin J T, Harith A and Sulaiman W H 2014 Chin. Phys. Lett. 31 124203
[3] Wang J L, Wang X L, He B R, Zhu J F, Wei Z Y and Wang Y G 2015 Chin. Phys. B 24 097601
[4] Duan L N, Liu X M, Mao D, Wang L R and Wang G X 2012 Opt. Express 20 265
[5] Gumenyuk R and Okhotnikov O G 2013 J. Opt. Soc. Am. B 30 776
[6] Ilday F ? Buckley J, Kuznetsova L and Wise F W 2003 Opt. Express 11 3550
[7] Zhou X Y, Dai Y, Yohei K and Kenji T 2008 Opt. Express 16 7055
[8] Zhou S , Ouzounov D G and Wise F W 2006 Opt. Lett. 31 1041
[9] Wang J L, Bu X B, Wang R, Zhang L, Zhu J F, Teng H, Han H N and Wei Z Y 2014 Appl. Opt. 53 5088
[10] Zhang Z X, Xu Z W and Zhang L 2012 Opt. Express 20 26736
[11] Xiao X S and Hua Y 2015 Chin. Phys. Lett. 32 024203
[12] Xie Y, Han H N, Liu W J and Wei Z Y 2015 Chin. Phys. Lett. 32 054211
[13] Lin J H, Wang D and Lin K H 2011 Laser Phys. Lett. 8 66
[14] Li P X, Zhao Z Q, Zhang M M, Liang B X, Chi J J, Yang C, Zhang G J, Hu H W, Yao Y F and Ma C M 2015 Appl. Phys. B 118 561
[15] Li W X, Hao Q, Yan M and Zeng H P 2009 Opt. Express 17 10113
[16] Zhu X J, Wang C H, Liu S X and Zhan G J 2012 IEEE Photon. Technol. Lett. 24 754
[17] Liu D F, Zhu X J, Wang C H, Yu J J, Zhang G J, Fang E X and Wang J J 2010 IEEE Photon. Technol. Lett. 22 1726
[18] Kobtsev S, Kukarin S and Fedotov Y 2008 Opt. Express 16 21936
[19] Liu D F, Zhu X J, Wang C H, Yu J J and Hu D F 2011 Appl. Opt. 50 484
[20] Nielsen C K and Keiding S R 2007 Opt. Lett. 32 1474
[21] Kong L J, Xiao X S and Yang C X 2010 Laser Phys. Lett. 7 359
[22] Lin J H, Jhu J L, Jyu S S, Lin T C and Lai Y C 2013 Laser Phys. 23 025103
[23] Song H Y, Xu L X, Gu C, Chen G L, Meng X L, Tao S, Zhang X M and Ming H 2013 SPIE. 90439043B1
[24] Lin J H, Lai B C and Lee Y W 2015 Laser Phys. 25 045101
[25] Yu H L, Wang X L, Zhou P, Xu X J and Chen J B 2015 IEEE Photon. Technol. Lett. 27 737
[26] Li S, Chen X, Kuksenkov D V, Koh J, Li M J, Zenteno L A and Nolan D A 2006 Opt. Express 14 6098
[27] Luo Z C, Xu W C, Song C X, Luo A P and Chen W C 2009 Chin. Phys. B 18 036
[28] Chernysheva M A, Krylov A A, Mou C, Arif R N, Rozhin A, Rummeli M H, Turitsyn S K and Dianov E M 2013 Eur. Conf. Opt. Commun. 39 1
[29] Peng J S, Zhan L, Luo S Y and Shen Q S 2013 J. Lightwave Technol. 31 2709
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 114202
[2] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 114202
[3] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 114202
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 114202
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 114202
[6] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 114202
[7] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 114202
[8] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 114202
[9] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 114202
[10] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 114202
[11] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 114202
[12] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 114202
[13] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 114202
[14] Lei Zhao, Pei-Jun Yao, Chun Gu, Li-Xin Xu. Raman-Assisted Passively Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(4): 114202
[15] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 114202
Viewed
Full text


Abstract