Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 017102    DOI: 10.1088/0256-307X/32/1/017102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Structural, Electrical, and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory
CHEN Yong-Chang1**, HUO Miao1, LIU Yang3, CHEN Tong4, LENG Cheng-Cai1, LI Qiang2, SUN Zhao-Lin2, SONG Li-Juan2
1School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063
2Liaoning Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun 113001
3Sinopec Fushun Research Institute of Petroleum and Petrochemicals, Fushun 113001
4State Key Laboratory of Food Additive and Condiment Testing, Zhenjiang Entry-Exit Inspection Quarantine Bureau, Zhenjiang 212000
Cite this article:   
CHEN Yong-Chang, HUO Miao, LIU Yang et al  2015 Chin. Phys. Lett. 32 017102
Download: PDF(746KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The layered Li2MnO3 is investigated by using the first-principles calculations within the GGA and GGA+U scheme, respectively. Within the GGA+U approach, the calculated intercalation voltage (ranges from 4.5 V to 4.9 V) is found to be in good agreement with experiments. From the analysis of electronic structure, the pure phase Li2MnO3 is insulating, which is indicative of poor electronic-conduction properties. However, further studies of lithium ion diffusion in bulk Li2MnO3 show that unlike the two-dimensional diffusion pathways in rock salt structure layered cathode materials, lithium can diffuse in a three-dimensional pathway in Li2MnO3, with moderate lithium migration energy barrier ranges from 0.57 to 0.63 eV.
Published: 23 December 2014
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  72.80.Ga (Transition-metal compounds)  
  73.63.Bd (Nanocrystalline materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/017102       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/017102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Yong-Chang
HUO Miao
LIU Yang
CHEN Tong
LENG Cheng-Cai
LI Qiang
SUN Zhao-Lin
SONG Li-Juan
[1] Kalyani P et al 1999 J. Power. Sources 80 103
[2] Rossouw M H and Thackeray M M 1991 Mater. Res. Bull. 26 463
[3] Robertson A D and Bruce P G 2002 Chem. Commun. 23 2790
[4] Paik Y et al 2002 Chem. Mater. 14 5109
[5] Wang J M et al 2011 Solid State Commun. 151 234
[6] Ouyang C Y et al 2005 Chin. Phys. Lett. 22 489
[7] Anisimov V I et al 1993 Phys. Rev. B 48 116929
[8] Kresse G and Hafner 1993 Phys. Rev. B 47 558
[9] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[10] Bl?chl P E 1994 Phys. Rev. B 50 17953
[11] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[12] Zhou F, Kang K, Maxisch T, Ceder G and Morgan D 2004 Solid State Commun. 132 181
[13] Trimarchi G and Binggeli N 2005 Phys. Rev. B 71 035101
[14] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901
[15] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[16] Sheppard D, Terrell R and Henkelman G 2008 J. Chem. Phys. 128 134106
[17] Strobel P and Lambertandron B 1988 J. Solid State Chem. 75 90
[18] Okamoto Y 2012 J. Electrochem. Soc. 159 A152
[19] Aydinol M K, Kohn A F, Ceder G, Cho K and Joannopoulos 1997 Phys. Rev. B 56 1354
[20] Nakamura K, Hirano H, Michihiro Y and Moriga T 2010 Solid State Ionics 181 1359
[21] Song X Q, Ma J F and Chen R F 2000 J. Inorg. Mater. 15 33 (in Chinese)
[22] Persson K, Sethuraman V A, Hardwick L J, Hinuma Y, Meng Y S, Ven A V D, Srinivasan V, Kostecki R and Ceder G 2010 J. Phys. Chem. Lett. 1 1176
[23] Nakamura K, Ohno H, Okamura K, Michihiro Y, Nakabayashi I and Kanashiro T 2000 Solid State Ionics 135 143
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 017102
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 017102
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 017102
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 017102
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 017102
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 017102
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 017102
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 017102
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 017102
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 017102
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 017102
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 017102
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 017102
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 017102
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 017102
Viewed
Full text


Abstract