Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 017101    DOI: 10.1088/0256-307X/32/1/017101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Quasi-Particle Properties in Copper Using the GW Approximation
YI Zhi-Jun**
Department of Physics, China University of Mining and Technology, Xuzhou 221116
Cite this article:   
YI Zhi-Jun 2015 Chin. Phys. Lett. 32 017101
Download: PDF(530KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electronic structures, absorption spectra and colors of Cu are calculated. Calculations are performed in the GW approximation (GWA) approximation, where G refers to Green's function and W is the dynamically screened Coulomb interaction. The calculated absorption spectra and color of Cu based on the density functional theory and the GWA are presented, and the calculated results within the GWA agree well with measurements. The calculated results indicate that many-body effects play an important role for the quasi-particle property calculations of Cu.
Published: 23 December 2014
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Qe (Excited states: methodology)  
  71.20.Be (Transition metals and alloys)  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
  72.15.Lh (Relaxation times and mean free paths)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/017101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/017101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YI Zhi-Jun
[1] Ogawa S, Nagano H and Peter H 1997 Phys. Rev. B 55 10869
[2] Wolf M and Aeschlimann M 1998 Physikalische Bl?tter 54 145
[3] Palik E D 1985 Handbook of Optical Constants of Solids (New York: Academic Press)
[4] Courths R and Hüfner S 1984 Phys. Rep. 112 53
[5] Xue L, Xu B and Yi L 2014 Chin. Phys. B 23 037103
[6] Manzar A, Murtaza G, Khenata R et al 2013 Chin. Phys. Lett. 30 127401
[7] Hedin L 1965 Phys. Rev. 139 A796
[8] Luttinger L and Ward J 1960 Phys. Rev. 118 1417
[9] Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390
[10] Marini A, Onida G and Sole R D 2001 Phys. Rev. Lett. 88 016403
[11] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[12] Gonze et al 2002 Comput. Mater. Sci. 25 478
[13] Gonze et al 2005 Z. Kristallogr. 220 558
[14] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[15] Bruneval F 2005 PhD Dissertation (Palaiseau: Ecole Polytechnique)
[16] Bruneval F and Gonze X 2008 Phys. Rev. B 78 085125
[17] Smith T and Guild J 1931 Trans. Opt. Soc. London 33 73
[18] Sch?ne W D and Ekardt W 2002 Phys. Rev. B 65 113112
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 017101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 017101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 017101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 017101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 017101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 017101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 017101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 017101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 017101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 017101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 017101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 017101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 017101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 017101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 017101
Viewed
Full text


Abstract