Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 014209    DOI: 10.1088/0256-307X/32/1/014209
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Thermal Analysis of Implant-Defined Vertical Cavity Surface Emitting Laser Array
XUN Meng1, XU Chen1**, XIE Yi-Yang2, DENG Jun1, XU Kun1, CHEN Hong-Da2
1Key Laboratory of Optoelectronics Technology (Ministry of Education), Beijing University of Technology, Beijing 100124
2State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
XUN Meng, XU Chen, XIE Yi-Yang et al  2015 Chin. Phys. Lett. 32 014209
Download: PDF(743KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.
Published: 23 December 2014
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  61.72.up (Other materials)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/014209       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/014209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XUN Meng
XU Chen
XIE Yi-Yang
DENG Jun
XU Kun
CHEN Hong-Da
[1] Du W M, Cao W Y and He Y F 2013 Chin. Phys. B 22 076803
[2] Cui H Y, Huang M and Ma M L 2013 Chin. Phys. B 22 124203
[3] Xu B Z, Liu J T and Cai L K 2013 Chin. Phys. Lett. 30 034206
[4] Yue L, Cheng R H and Wang H L 2013 Chin. Phys. Lett. 30 024209
[5] Botez D, Mawst L, Hayashida P, Peterson G and Roth T J 1988 Appl. Phys. Lett. 53 464
[6] Hadley 1990 Opt. Lett. 15 1215
[7] Botez D 1985 IEEE J. Quantum Electron. 21 1752
[8] Siriani D F and Choquette K D 2011 IEEE Photon. Technol. Lett. 23 167
[9] Lehman A C and Choquette K D 2007 IEEE Photon. Technol. Lett. 19 1421
[10] Mao M M, Xu C, Kan Q, Xie Y Y, Xun M, Xu K, Liu J, Ren H Q and Chen H D 2014 IEEE Photon. Technol. Lett. 26 395
[11] Mao M M, Xu C, Xie Y Y, Kan Q, Xun M, Xu K, Wang J, Ren H Q and Chen H D 2013 IEEE Photon. J. 5 1502606
[12] Xun M, Xu C, Xie Y Y, Zhu Y X, Mao M M, Xu K, Wang J, Liu J and Chen H D 2014 Electron. Lett. 50 1085
[13] Siriani D F and Choquette K D 2011 IEEE J. Quantum Electron. 47 160
[14] Moench H, Kolb J S, Engelhardt A P, Gerlach P, Jaeger R, Retsch J P, Weichmann U and Witzigmann B 2014 Proc. SPIE 9001 90010F-1
[15] Zhang J M, Ning Y Q, Zhang X, Zeng Y G, Zhang J and Wang L J 2014 Opt. Laser Technol. 56 343
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 014209
[2] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 014209
[3] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 014209
[4] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 014209
[5] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 014209
[6] Ting Fu, Yu-Fei Wang, Xue-You Wang, Xu-Yan Zhou, Wan-Hua Zheng. Mode Control of Quasi-PT Symmetry in Laterally Multi-Mode Double Ridge Semiconductor Laser[J]. Chin. Phys. Lett., 2020, 37(4): 014209
[7] Yan-Ping Li, Li-Jun Yuan, Li Tao, Wei-Xi Chen, Bao-Jun Wang, Jiao-Qing Pan. III–V/Si Hybrid Laser Array with DBR on Si Waveguide[J]. Chin. Phys. Lett., 2019, 36(10): 014209
[8] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 014209
[9] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 014209
[10] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 014209
[11] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 014209
[12] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 014209
[13] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 014209
[14] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 014209
[15] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 014209
Viewed
Full text


Abstract