Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 095202    DOI: 10.1088/0256-307X/31/9/095202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Millimeter Propagation and High Confinement in Rhombus-Based Hybrid Plasmonic Waveguides
HU Ru, LANG Pei-Lin, ZHAO Yu-Fang, DUAN Gao-Yan, WANG Lu-Lu, DAI Jin, CHEN Zhao, YU Li**, XIAO Jing-Hua
State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
HU Ru, LANG Pei-Lin, ZHAO Yu-Fang et al  2014 Chin. Phys. Lett. 31 095202
Download: PDF(789KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A hybrid plasmonic waveguide, consisting of two dielectric nanowires symmetrically put at the opposite corner angles of a rhombic metal, is proposed and numerically analyzed by the finite-element method. Simulations show that the present waveguide can achieve the millimeter propagation distance (1244 μm) and deep subwavelength mode area (5.5×10?3 μm2), simultaneously. Compared with the previous hybrid waveguides based on cylinder nanowires or flat films, the rhombic corner angles enable our waveguide to achieve both longer propagation distance and smaller mode area. This is due to the enhanced coupling between the dielectric guided mode in nanowires and the surface plasmon polariton mode at rhombic surface. Furthermore, the extreme confinement near the rhombic corner angles can strengthen the light-matter interaction greatly and make the present waveguide useful in many applications, such as nonlinear photonics, high-quality nanolasers and nanophotonic waveguides.
Published: 22 August 2014
PACS:  52.25.-b (Plasma properties)  
  42.82.Fv (Hybrid systems)  
  42.82.Et (Waveguides, couplers, and arrays)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/095202       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/095202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Ru
LANG Pei-Lin
ZHAO Yu-Fang
DUAN Gao-Yan
WANG Lu-Lu
DAI Jin
CHEN Zhao
YU Li
XIAO Jing-Hua
[1] Maier S A 2007 Plasmonics: Fundamentals and Applications (Berlin: Springer)
[2] Ozbay E 2006 Science 311 189
[3] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[4] Lu H, Liu X M and Mao D 2012 Nanotechnology 23 444003
[5] Chen Z, Yu L and Wang L L 2013 Chin. Phys. Lett. 30 054212
[6] Gupta B, Pandey S and Nahata A 2014 Opt. Express 22 2868
[7] Zhao Y S and Zhu L 2010 J. Opt. Soc. Am. B 27 1260
[8] Bian Y S, Zheng Z and Zhou T 2013 J. Opt. 15 055011
[9] Oulton R F, Sorger V J and Genov D A 2008 Nat. Photon. 2 496
[10] Bian Y S, Zheng Z, Liu Y and Zhou T 2011 Opt. Express 19 22417
[11] Chen L, Zhang T, Li X and Huang W P 2012 Opt. Express 20 20535
[12] Bian Y S, Zheng Z, Liu Y and Zhou T 2010 Opt. Express 18 23756
[13] Chu H S, Li E P and Hegde R 2010 Appl. Phys. Lett. 96 221103
[14] Jeong C Y, Kim M and Kim S 2013 Opt. Express 21 17404
[15] Bian Y S, Zheng Z and Zhao X 2012 IEEE Photon. Technol. Lett. 24 1279
[16] Huang C C 2013 Opt. Express 21 29544
[17] Gong H, Liu Y M and Yu Z Y 2014 Chin. Phys. B 23 046103
[18] Olyaeefar B and Khoshsima H 2014 J. Phys. D: Appl. Phys. 47 105105
[19] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[20] Lou F, Wang Z C and Wosinski L 2012 Appl. Phys. Lett. 100 241105
[21] Alam M Z, Caspers J N and Mojahedi M 2013 Opt. Express 21 16029
[22] Nielsen M G, Bernardin T and Weeber J C 2014 Opt. Lett. 39 2282
[23] Zhang L and Yang S 2013 Chin. Phys. Lett. 30 034208
Related articles from Frontiers Journals
[1] Feibin Fan, Jinlin Xie, Qiaofeng Zhang, Longlong Sang, Weixing Ding. Electron Magnetohydrodynamics Magnetic Reconnection Experiment on Keda Linear Magnetized Plasma Device[J]. Chin. Phys. Lett., 2019, 36(1): 095202
[2] Xiang-Mei Liu, Yuan-Hong Song, Wei Jiang, Wen-Zhu Jia. Effect of Parallel-Plate Geometry on Mode Transition Behavior in Argon Microplasmas: Two-Dimensional Simulation[J]. Chin. Phys. Lett., 2018, 35(4): 095202
[3] LI Ying-Ying, LIU Xiao-Li, YANG Da-Jie, HAO Zhong-Hua, WANG Qu-Quan. Synthesis and Optical Responses of Ag@Au/Ag@Au Double Shells[J]. Chin. Phys. Lett., 2015, 32(02): 095202
[4] HE Xin, CHANG Sheng-Li, DAI Sui-An, YANG Jun-Cai. Simulation of Radiative Transfer in Nonequilibrium Plasmas Containing N and O Species Based on the Approximate Collision-Radiative Method[J]. Chin. Phys. Lett., 2013, 30(11): 095202
[5] CHEN Zhao, YU Li, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, XIAO Jing-Hua . High-Resolution Compact Plasmonic Wavelength Demultiplexers Based on Cascading Square Resonators [J]. Chin. Phys. Lett., 2013, 30(5): 095202
[6] A. M. A. Amry*,V. J. Law,I. W. Boyd. Optical Emission Analysis of Molecular Nitrogen by Using a Self-Resonating Dielectric Barrier Plasma Reactor[J]. Chin. Phys. Lett., 2012, 29(5): 095202
[7] WU Jing, **, ZHANG Peng-Yun, SUN Ji-Zhong, YAO Lie-Ming, DUAN Xu-Ru . Dust Particle Density and Charges in Radio-Frequency Mixture Discharge Plasma[J]. Chin. Phys. Lett., 2011, 28(9): 095202
[8] DING Qi-Yong, **, ZHANG Song-Bin, WANG Jian-Guo . Simulation of Hydrogen Emission Spectrum in Debye Plasmas[J]. Chin. Phys. Lett., 2011, 28(5): 095202
[9] LI Gang, ZHANG Yi, XU Yan-Ji, LIN Bin, LI Yu-Tong, ZHU Jun-Qiang. Measurement of Plasma Density Produced in Dielectric Barrier Discharge for Active Aerodynamic Control with Interferometer[J]. Chin. Phys. Lett., 2009, 26(10): 095202
[10] HUANG Xiao-Jiang, XIN Yu, ZHANG Jie, NING Zhao-Yuan. The influence of Exciting Frequency on N2 and N2+ Vibrational Temperature of Nitrogen Capacitively Coupled Plasma[J]. Chin. Phys. Lett., 2009, 26(5): 095202
[11] SUN Ji-Zhong, WANG Qi, ZHANG Jian-Hong, WANG Yan-Hui, WANG De-Zhen. Self-Consistent Model for Atmospheric Pressure Dielectric Barrier Discharges in Helium[J]. Chin. Phys. Lett., 2008, 25(11): 095202
[12] YAN Long-Wen, LEI Guang-Jiu, ZHONG Guang-Wu, JIANG Tao, ZHOU Yan, JIANG Shao-Feng, DING Xuan-Tong, ZHOU Cai-Pin, LIU Yong. Neutral Beam Injection Experiments in the HL-1M Tokamak [J]. Chin. Phys. Lett., 2003, 20(10): 095202
[13] WANG De-zhen, YU Jiong, GONG Ye. Model of Collisional Sheath in Spherical and Cylindrical Geometries for Plasma Source Ion Implantation[J]. Chin. Phys. Lett., 1996, 13(2): 095202
[14] LIN Chang. Nonlinear Two-Dimensional Debye Screening in Plasmas[J]. Chin. Phys. Lett., 1994, 11(7): 095202
[15] DUAN Xuru, YUAN Chengjie, QIAN Shangjie, DING Xuantong, YUAN Bin, YANG Guang, DIAO Guangyue . Particle Confinement Properties of Lower Hybrid Current Drive Plasma on the HL-1 Tokamak [J]. Chin. Phys. Lett., 1994, 11(3): 095202
Viewed
Full text


Abstract