Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 076501    DOI: 10.1088/0256-307X/31/7/076501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
High Solubility of Hetero-Valence Ion (Cu2+) for Reducing Phase Transition and Thermal Expansion of ZrV1.6P0.4O7
YUAN Bao-He1,2, YUAN Huan-Li1, SONG Wen-Bo1, LIU Xian-Sheng1, CHENG Yong-Guang1, CHAO Ming-Ju1, LIANG Er-Jun1**
1School of Physical Science & Engineering and Key Laboratory of Materials Physics (Ministry of Education), Zhengzhou University, Zhengzhou 450052
2North China University of Water Resources and Electric Power, Zhengzhou 450011
Cite this article:   
YUAN Bao-He, YUAN Huan-Li, SONG Wen-Bo et al  2014 Chin. Phys. Lett. 31 076501
Download: PDF(720KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Large thermal expansion at room temperature and high phase transition temperature of ZrV2O7 limit its practical applications and are reduced by the high solubility of hetero-valence ion (Cu2+) on the basis of an equal-valence substitution of P5+ for V5+. The temperature-dependent Raman spectra show that Zr0.9Cu0.1V1.6P0.4O6.9 maintains a normal parent cubic structure till 173 K and transforms to a 3×3×3 cubic superstructure below 173 K. Temperature dependent x-ray diffraction patterns of Zr0.9Cu0.1V1.6P0.4O6.9 show near zero and negative thermal expansion. High solubility of lower valence Cu2+ relates to an equal-valence substitution of smaller P5+ for V5+, which extends the bond angle of V(P)–O–V in ZrV1.6P0.4O7 close to 180°. The change of microstructure is considered to be responsible for reduced phase transition temperature and thermal expansion.
Published: 30 June 2014
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  78.30.-j (Infrared and Raman spectra)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/076501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/076501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Bao-He
YUAN Huan-Li
SONG Wen-Bo
LIU Xian-Sheng
CHENG Yong-Guang
CHAO Ming-Ju
LIANG Er-Jun
[1] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[2] Evans J S O, Mary T A and Sleight A W 1997 J. Solid State Chem. 133 580
[3] Evans J S O, Mary T A and Sleight A W 1997 Physica B 241 311
[4] Evans J S O, David W I F and Sleight A W 1999 Acta Crystallogr. B 55 333
[5] Evans J S O, Hu Z, Jorgensen J D, Argyriou D N, Short S and Sleight A W 1997 Science 275 61
[6] Jorgensen J D, Hu Z, Teslic S, Argyriou D N, Short S, Evans J S O and Sleight A W 1999 Phys. Rev. B 59 215
[7] Liang E J, Huo H L, Wang J P and Chao M J 2008 J. Phys. Chem. C 112 6577
[8] Niphadkar P S, Bhange D S, Selvaraj K and Joshi P N 2012 Chem. Phys. Lett. 548 51
[9] Li Z Y, Song W B and Liang E J 2011 J. Phys. Chem. C 115 17806
[10] Li Q J, Yuan B H, Song W B, Liang E J and Yuan B 2012 Chin. Phys. B 21 046501
[11] Song W B, Liang E J, Liu X S, Li Z Y, Yuan B H and Wang J Q 2013 Chin. Phys. Lett. 30 126502
[12] Korthuis V, Khosrovani N and Sleight A W 1995 J. Ser. Chem. Mater. 7 412
[13] Khosrovani N, Korthuis V and Sleight A W 1996 Inorg. Chem. 35 485
[14] Khosrovani N and Sleight A W 1997 J. Solid State Chem. 132 355
[15] Withers R L, Evans J S O, Hanson J and Sleight A W 1998 J. Solid State Chem. 137 161
[16] Withers R L, Tabira Y, Evans J S O, King I J and Sleight A W 2001 J. Solid State Chem. 157 186
[17] Yanase I, Kojima T and Kobayashi H 2011 Solid State Commun. 151 595
[18] Yamamura Y, Horikoshi A, Yasuzuka S, Saitoh H and Saito K 2011 Dalton Trans. 40 2242
[19] Petruska E A, Muthu D V S, Carlson S, Krogh Andersen A M, Ouyang L and Kyuger M B 2010 Solid State Commun. 150 235
[20] Hemamala U L C, El-Ghussein F and Muthu D V S 2007 Solid State Commun. 141 680
[21] Yuan H L, Yuan B H, Li F and Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese)
[22] Ofer R, Keren A, Chmaissem O and Amato A 2008 Phys. Rev. B 78 140508
Related articles from Frontiers Journals
[1] Meibo Tang, Xiuhong Pan , Minghui Zhang , and Haiqin Wen . Scaling Behavior between Heat Capacity and Thermal Expansion in Solids[J]. Chin. Phys. Lett., 2021, 38(2): 076501
[2] Meng Li, Yuan Li, Chun-Yan Wang, Qiang Sun. Negative Thermal Expansion of GaFe(CN)$_{6}$ and Effect of Na Insertion by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(6): 076501
[3] Qing Wang, Hai-Peng Wang, De-Lu Geng, Ming-Xing Li, Bing-Bo Wei. A Calorimetric Study Assisted with First Principle Calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range[J]. Chin. Phys. Lett., 2018, 35(12): 076501
[4] Yun-Kai Zhou, Xing Zhang, Shu-Guang Liu, Ming-Zhen Ma, Ri-Ping Liu. High Performance ZrNbAl Alloy with Low Thermal Expansion Coefficient[J]. Chin. Phys. Lett., 2018, 35(8): 076501
[5] Wei-Li Wang, Li-Jun Meng, Liu-Hui Li, Liang Hu, Kai Zhou, Zhang-Huan Kong, Bing-Bo Wei. An Experimental Study of Thermophysical Properties for Quinary High-Entropy NiFeCoCrCu/Al Alloys[J]. Chin. Phys. Lett., 2016, 33(11): 076501
[6] Zheng-Fu Cheng, Rui-Lun Zheng. Thermal Expansion and Deformation of Graphene[J]. Chin. Phys. Lett., 2016, 33(04): 076501
[7] Hai-Peng Wang, Peng Lü, Kai Zhou, Bing-Bo Wei. Thermal Expansion of Ni$_{3}$Al Intermetallic Compound: Experiment and Simulation[J]. Chin. Phys. Lett., 2016, 33(04): 076501
[8] Xiang-Hong Ge, Yan-Chao Mao, Lin Li, Li-Ping Li, Na Yuan, Yong-Guang Cheng, Juan Guo, Ming-Ju Chao, Er-Jun Liang. Phase Transition and Negative Thermal Expansion Property of ZrMnMo$_{3}$O$_{12}$[J]. Chin. Phys. Lett., 2016, 33(04): 076501
[9] ZHENG Fa-Song, DING Ying-Chun, TAN Yi-Dong, LIN Jing, ZHANG Shu-Lian. The Approach of Compensation of Air Refractive Index in Thermal Expansion Coefficients Measurement Based on Laser Feedback Interferometry[J]. Chin. Phys. Lett., 2015, 32(07): 076501
[10] CHU Li-Hua, WANG Cong, SUN Ying, LI Mei-Cheng, WAN Zi-Pei, WANG Yu, DOU Shang-Yi, CHU Yue. Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds[J]. Chin. Phys. Lett., 2015, 32(4): 076501
[11] ZHANG Xu-Dong, CUI Shou-Xin, SHI Hai-Feng. Theoretical Study of Thermodynamics Properties and Bulk Modulus of SiC under High Pressure and Temperature[J]. Chin. Phys. Lett., 2014, 31(1): 076501
[12] SONG Wen-Bo, LIANG Er-Jun, LIU Xian-Sheng, LI Zhi-Yuan, YUAN Bao-He, WANG Jun-Qiao. A Negative Thermal Expansion Material of ZrMgMo3O12[J]. Chin. Phys. Lett., 2013, 30(12): 076501
[13] LIU Dong-Huan, SHANG Xin-Chun. The Physical-Mechanism Based High-Temperature Thermal Contact Conductance Model with Experimental Verification[J]. Chin. Phys. Lett., 2013, 30(3): 076501
[14] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 076501
[15] LIU Xi**, LIU Wei, HE Qiang, DENG Li-Wei, WANG He-Jin, HE Duan-Wei, LI Bao-Sheng . Isotropic Thermal Expansivity and Anisotropic Compressibility of ReB2[J]. Chin. Phys. Lett., 2011, 28(3): 076501
Viewed
Full text


Abstract