Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 068502    DOI: 10.1088/0256-307X/31/6/068502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
High-Voltage AlGaN/GaN-Based Lateral Schottky Barrier Diodes
KANG He1, WANG Quan1, XIAO Hong-Ling1, WANG Cui-Mei1, JIANG Li-Juan1, FENG Chun1, CHEN Hong1, YIN Hai-Bo1, WANG Xiao-Liang1,2,3**, WANG Zhan-Guo1,2, HOU Xun3
1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Beijing Key Laboratory of Low-Dimensional Semiconductor Materials and Devices, Beijing 100083
3ISCAS-XJTU Joint Laboratory of Functional Materials and Devices for Informatics, Beijing 100083
Cite this article:   
KANG He, WANG Quan, XIAO Hong-Ling et al  2014 Chin. Phys. Lett. 31 068502
Download: PDF(600KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Lateral Schottky barrier diodes (SBDs) on AlGaN/GaN heterojunctions are fabricated and studied. The characteristics of the fabricated SBDs with different Schottky contact diameters and different Schottky-Ohmic contact spacings are investigated. The breakdown voltage can be increased by either increasing the Schottky-Ohmic contact spacing or increasing the Schottky contact diameter. However, the specific on-resistance is increased at the same time. A high breakdown voltage of 1400 V and low reverse leakage current below 20 nA are achieved by the device with a Schottky contact diameter of 100 μm and a contact spacing of 40 μm, yielding a high VBR2/RON,sp value of 194 MW?cm?2.
Published: 26 May 2014
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  73.61.Ey (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/068502       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/068502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KANG He
WANG Quan
XIAO Hong-Ling
WANG Cui-Mei
JIANG Li-Juan
FENG Chun
CHEN Hong
YIN Hai-Bo
WANG Xiao-Liang
WANG Zhan-Guo
HOU Xun
[1] Morisette D T and Cooper J A 2002 IEEE Trans. Electron Devices 49 1657
[2] Brown E R 1998 Solid-State Electron. 42 2119
[3] Wang X, Hu G and Ma Z 2007 J. Cryst. Growth 298 835
[4] Bandic Z, Z Bridger P M and Piquette E C 1999 Appl. Phys. Lett. 74 1266
[5] Lee S C, Ha M W and Her J C 2005 Power Semiconductor Devices ICs (Santa Barbara CA 23–26 May 2005) p 247
[6] Ishida H, Shibata D and Matsuo H 2008 Electron. Devices Meeting (San Francisco CA 15–17 December 2008) p 1
[7] Cao D S, Lu H and Che D J 2011 Chin. Phys. Lett. 28 017303
[8] Hashizume, T Kotani J and Hasegawa H 2004 Appl. Phys. Lett. 84 4884
[9] Lin D F, Wang X L and Xiao H 2011 Eur. Phys. J.: Appl. Phys. 55 161103
[10] Liu F, Wang T and Shen B 2009 Chin. Phys. B 18 1614
[11] Chen W, Wong K Y and Chen K J 2009 IEEE Electron Device Lett. 30 430
[12] Wang F, Lu H and Xiu X 2011 Appl. Surf. Sci. 257 3948
[13] Lu W, Wang L and Gu S 2011 IEEE Trans. Electron Devices 58 1986
[14] Zhang J F, Hao Y and Wang X J 2008 Acta Phys. Sin. 57 3171 (in Chinese)
[15] Sze S M and Ng K K 2006 Physics of Semiconductor Devices (New Jersey: John Wiley and Sons)
Related articles from Frontiers Journals
[1] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 068502
[2] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 068502
[3] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 068502
[4] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 068502
[5] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 068502
[6] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 068502
[7] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 068502
[8] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 068502
[9] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 068502
[10] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 068502
[11] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 068502
[12] Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang, Yi Zhao. Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain[J]. Chin. Phys. Lett., 2018, 35(11): 068502
[13] Li-Hua Dai, Da-Wei Bi, Zheng-Xuan Zhang, Xin Xie, Zhi-Yuan Hu, Hui-Xiang Huang, Shi-Chang Zou. Metastable Electron Traps in Modified Silicon-on-Insulator Wafer[J]. Chin. Phys. Lett., 2018, 35(5): 068502
[14] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 068502
[15] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 068502
Viewed
Full text


Abstract