Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 068402    DOI: 10.1088/0256-307X/31/6/068402
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Developments of High-Efficiency Flexible Cu(In,Ga)Se2 Thin Film Solar Cells on a Polyimide Sheet by Sodium Incorporation
ZHANG Li1**, LIU Fang-Fang1, LI Feng-Yan1, HE Qing1, LI Chang-Jian1, LI Bao-Zhang1, ZHU Hong-Bing2
1Tianjin Key Laboratory for Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071
2College of Physics Science and Technology, Hebei University, Baoding 071002
Cite this article:   
ZHANG Li, LIU Fang-Fang, LI Feng-Yan et al  2014 Chin. Phys. Lett. 31 068402
Download: PDF(569KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the fabrication of flexible Cu(In,Ga)Se2 (CIGS) solar cells on a polyimide (PI) sheet with and without Na incorporation. A sodium element is incorporated into the CIGS absorber by using a NaF precursor after Mo back contact deposition. X-ray diffraction patterns show that the (112) preferred orientation of the as-grown CIGS films is decreased by Na incorporation. The secondary phase of (Inx,Ga1?x)2Se3 is observed for the CIGS films with Na. There is no significant difference in the grain size with and without Na incorporation from surface and cross-sectional SEM images. Additionally, the increase of carrier concentration and decrease of resistivity of CIGS absorber are induced by Na doping. Finally, the flexible CIGS solar cells on PI sheets with efficiency close to 11%, containing Na, are achieved. The improvement of cell efficiency can be attributed to the modified electrical properties of the CIGS film by Na incorporation.
Published: 26 May 2014
PACS:  84.60.Jt (Photoelectric conversion)  
  81.05.Hd (Other semiconductors)  
  81.15.Ef  
  81.05.Cy (Elemental semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/068402       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/068402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Li
LIU Fang-Fang
LI Feng-Yan
HE Qing
LI Chang-Jian
LI Bao-Zhang
ZHU Hong-Bing
[1] Green M, Emery K, Hishikawa Y, Warta W and Dunlop E D 2013 Prog. Photovolt.: Res. Appl. 21 1
[2] Zhang L, He Q, Jiang W L, Li C J and Sun Y 2009 Chin. Phys. Lett. 26 026801
[3] Yamaguchi M 1995 J. Appl. Phys. 78 1476
[4] Gay R R 1997 Prog. Photovolt.: Res. Appl. 5 337
[5] Birkmire R, Eser E, Fields S and Shafarman W 2005 Prog. Photovolt.: Res. Appl. 13 141
[6] Kessler F and Rudmann D 2004 Sol. Energy 77 685
[7] Shafarman W N and Zhu J 2000 Thin Solid Films 361 473
[8] ?rd M B, Granath K and Stolt L 2000 Thin Solid Films 361 9
[9] Kessler J, Chityuttakan C, Sch?ldstr?m J and Stolt L 2003 Thin Solid Films 431 1
[10] Lammer M, Klemm U and Powalla M 2001 Thin Solid Films 387 33
[11] Wei S H, Zhang S B and Zunger A 1999 J. Appl. Phys. 85 7214
[12] Kessler F and Rudmann D 2004 Sol. Energy 77 685
[13] Zhang L, He Q, Jiang W L, Li C J and Sun Y 2008 Chin. Phys. Lett. 25 734
[14] Zhang L, He Q, Jiang W L, Liu F F, Li C J and Sun Y 2009 Sol. Energy Mater. Sol. Cells 93 114
[15] Zhang L, Liu, F F, Li, F Y, He Q, Li, B Z and Li C J 2012 Sol. Energy Mater. Sol. Cells 99 356
[16] Marion S and Uwe R 2001 Thin Solid Films 387 141
[17] Chaisitsak S, Yamada A and Konagai M 2002 Jpn. J. Appl. Phys. 41 507
[18] Jiang W L, Zhang L, He Q, Li F Y, Zhou Z Q, Liu W, Li B Z, Li C J and Sun Y 2008 Proc. 33rd Photovoltaic Specialists Conf. (San Diego, USA 11–16 May 2008) p 978
[19] Pauw L J 1958 Philips Res. Rep. 13 1
[20] Ruckh M, Schmid D, Kaiser M, Sch?ffler R, Walter T and Schock H W 1994 Proc. 1st World Conf. on Photovoltaic Energy Conversion (New York, USA 5–9 December 1994) p 156
Related articles from Frontiers Journals
[1] Zihan Qu, Fei Ma, Yang Zhao, Xinbo Chu, Shiqi Yu, and Jingbi You. Updated Progresses in Perovskite Solar Cells[J]. Chin. Phys. Lett., 2021, 38(10): 068402
[2] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 068402
[3] Gen Yue, Zhen Deng, Sen Wang, Ran Xu, Xinxin Li, Ziguang Ma, Chunhua Du, Lu Wang, Yang Jiang, Haiqiang Jia, Wenxin Wang, Hong Chen. Absorption Enhancement of Silicon Solar Cell in a Positive-Intrinsic-Negative Junction[J]. Chin. Phys. Lett., 2019, 36(5): 068402
[4] Wan-Ying Zhao, Zhi-Liang Ku, Li-Ping Lv, Xian Lin, Yong Peng, Zuan-Ming Jin, Guo-Hong Ma, Jian-Quan Yao. Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites[J]. Chin. Phys. Lett., 2019, 36(2): 068402
[5] Rui Wu, Jun-Ling Wang, Gang Yan, Rong Wang. Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(4): 068402
[6] Hui-Jie Yan, Zhi-Liang Ku, Xue-Feng Hu, Wan-Ying Zhao, Min-Jian Zhong, Qi-Biao Zhu, Xian Lin, Zuan-Ming Jin, Guo-Hong Ma. Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH$_{3}$NH$_{3}$PbI$_{3}$ Perovskites[J]. Chin. Phys. Lett., 2018, 35(2): 068402
[7] Jun-Ling Wang, Tian-Cheng Yi, Yong Zheng, Rui Wu, Rong Wang. Temperature-Dependent Photoluminescence Analysis of 1.0MeV Electron Irradiation-Induced Nonradiative Recombination Centers in n$^{+}$–p GaAs Middle Cell of GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(7): 068402
[8] Du-Xiang Wang, Ming-Hui Song, Jing-Feng Bi, Wen-Jun Chen, Sen-Lin Li, Guan-Zhou Liu, Ming-Yang Li, Chao-Yu Wu. Enhanced Efficiency of Metamorphic Triple Junction Solar Cells for Space Applications[J]. Chin. Phys. Lett., 2017, 34(6): 068402
[9] Yong Zheng, Tian-Cheng Yi, Jun-Ling Wang, Peng-Fei Xiao, Rong Wang. Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements[J]. Chin. Phys. Lett., 2017, 34(2): 068402
[10] Wen-Gui Wang, Li Zhu, Yu-Yan Weng, Wen Dong. TiO$_{2}$-Loaded WO$_{3}$ Composite Films for Enhancement of Photocurrent Density[J]. Chin. Phys. Lett., 2017, 34(2): 068402
[11] Jun-Na Zhang, Lei Wang, Zhun Dai, Xun Tang, You-Bo Liu, De-Ren Yang. The 18.3% Silicon Solar Cells with Nano-Structured Surface and Rear Emitter[J]. Chin. Phys. Lett., 2017, 34(2): 068402
[12] Yong Zheng, Tian-Cheng Yi, Peng-Fei Xiao, Juan Tang, Rong Wang. Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle Cells for Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2016, 33(05): 068402
[13] Talib Hussain, Hui-Qi Ye, Dong Xiao. Excess Carrier Lifetime Improvement in c-Si Solar Cells by YAG:Ce$^{3+}$-Yb$^{3+}$[J]. Chin. Phys. Lett., 2016, 33(05): 068402
[14] SUN Ding, GE Yang, XU Sheng-Zhi, ZHANG Li, LI Bao-Zhang, WANG Guang-Cai, WEI Chang-Chun, ZHAO Ying, ZHANG Xiao-Dan. Improvement of the Open Circuit Voltage of CZTSe Thin-Film Solar Cells by Surface Sulfurization Using SnS[J]. Chin. Phys. Lett., 2015, 32(12): 068402
[15] WANG Fei-Long, DAI Bin, LIU Xue-Feng, SUN Yi-Ning, SUN Zhi-Bin, YU Qiang, ZHAI Guang-Jie. Containerless Heating Process of a Deeply Undercooled Metal Droplet by Electrostatic Levitation[J]. Chin. Phys. Lett., 2015, 32(11): 068402
Viewed
Full text


Abstract