Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 067402    DOI: 10.1088/0256-307X/31/6/067402
Anomalous Temperature Dependence of the Quality Factor in a Superconducting Coplanar Waveguide Resonator
ZHOU Pin-Jia1, WANG Yi-Wen1, WEI Lian-Fu1,2**
1Quantum Optoelectronics Laboratory, School of Physics, Southwest Jiaotong University, Chengdu 610031
2State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275
Download: PDF(813KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the measurements of the temperature dependence of the internal quality factor (Qi) of a microwave resonator, well below the superconducting transition temperature. The device is a quarter-wavelength niobium (Tc=9.2 K) coplanar waveguide resonator. The measured |S21| parameter shows typically the skewed Lorentzian distributions, from which the fitted quality factor monotonically decreases with the temperature increasing from 30 mK to 900 mK. It is observed that for the lower temperature range (i.e., at T<700 mK) the temperature dependence of the fitted Qi deviates significantly from the predictions of the usual Mattis–Bardeen theory. The measured 3 dB internal quality factor Q'i also verifies such an anomalous temperature dependence. Physically, this phenomenon could be attributed dominantly to the effects of the two-level systems in the device, rather than the usual temperature-dependent complex conductance.
Published: 26 May 2014
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  81.16.Nd (Micro- and nanolithography)  
  84.40.Az (Waveguides, transmission lines, striplines)  
  85.25.-j (Superconducting devices)  
Cite this article:   
ZHOU Pin-Jia, WANG Yi-Wen, WEI Lian-Fu 2014 Chin. Phys. Lett. 31 067402
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
ZHOU Pin-Jia
WEI Lian-Fu
[1] Mazin B A et al 2002 AIP Conf. Proc. 605 309
[2] Day K et al 2003 Nature 425 817
[3] Gao J S et al 2012 Appl. Phys. Lett. 101 142602
[4] Wallraff A et al 2007 Nature 431 162
[5] Sillanpaa M et al 2007 Nature 449 438
[6] Xiang Z L et al 2013 Rev. Mod. Phys. 85 623
[7] Knill E et al 2001 Nature 409 46
[8] Wang H et al 2009 Appl. Phys. Lett. 95 233508
[9] Barends R et al 2010 Appl. Phys. Lett. 97 023508
[10] Megrant A et al 2012 Appl. Phys. Lett. 100 113510
[11] Mattis D C and Bardeen J 1958 Phys. Rev. 111 412
[12] Mazin B A 2004 Microwave Kinetic Inductance Detectors (PhD dissertation) (California: California Institute of Technology)
[13] Gao J S et al 2008 Appl. Phys. Lett. 92 152505
[14] Kumar S et al 2008 Appl. Phys. Lett. 92 123503
[15] Mazin B A et al 2006 Appl. Phys. Lett. 89 222507
[16] Ponchak G E et al 2005 IEEE Trans. Microwave Theory Tech. 53 713
[17] Li H J et al 2013 Chin. Sci. Bull. 58 1
[18] Petersan P J and Anlage S M 1998 J. Appl. Phys. 84 3392
[19] Barends R et al 2007 IEEE Trans. Appl. Supercond. 17 263
[20] Glover R E and Tinkham M 1957 Phys. Rev. 108 243
[21] Zmuidzinas J 2012 Annu. Rev. Condens. Matter Phys. 3 169
[22] Calvo M 2008 Development of Kinetic Inductance Detectors for the Study of the Cosmic Microwave Background Polarization (PhD dissertation) (Roma: Sapienza University)
[23] Wisbey D S et al 2010 J. Appl. Phys. 108 093918
[24] Gao J S et al 2012 Appl. Phys. Lett. 101 142602
[25] Phillips W A 1987 Rep. Prog. Phys. 50 1657
[26] Zhang S L et al 2013 Chin. Phys. Lett. 30 088401
[27] Zhao N et al 2012 Chin. Phys. Lett. 29 088401
[28] Wang Y W et al 2013 J. Appl. Phys. 114 153109
Related articles from Frontiers Journals
[1] Hui-Ying Liu, Jun-Ren Shi. Radiation-Induced Oscillating Gap States of Nonequilibrium Two-Dimensional Superconductors[J]. Chin. Phys. Lett., 2018, 35(6): 067402
[2] Yulong Huang, Zhongpei Feng, Shunli Ni, Jun Li, Wei Hu, Shaobo Liu, Yiyuan Mao, Huaxue Zhou, Fang Zhou, Kui Jin, Huabing Wang, Jie Yuan, Xiaoli Dong, Zhongxian Zhao. Superconducting (Li,Fe)OHFeSe Film of High Quality and High Critical Parameters[J]. Chin. Phys. Lett., 2017, 34(7): 067402
[3] Jie Liu, Li-Qun Zhang, Zhen-Nan Jiang, Kamal Ahmad, Jian-She Liu, Wei Chen. Superconducting Nanowire Single Photon Detector with Optical Cavity[J]. Chin. Phys. Lett., 2016, 33(08): 067402
[4] GONG Xin-Xin, ZHOU He-Xin, XU Peng-Chao, YUE Di, ZHU Kai, JIN Xiao-Feng, TIAN He, ZHAO Ge-Jian, CHEN Ting-Yong. Possible p-Wave Superconductivity in Epitaxial Bi/Ni Bilayers[J]. Chin. Phys. Lett., 2015, 32(06): 067402
[5] GOU Xiao-Fan, ZHU Guang. A Modified Lattice Model of the Reversible Effect of Axial Strain on the Critical Current of Polycrystalline REBa2Cu3O7−δ Films[J]. Chin. Phys. Lett., 2015, 32(03): 067402
[6] ZHANG Wen-Hao, SUN Yi, ZHANG Jin-Song, LI Fang-Sen, GUO Ming-Hua, ZHAO Yan-Fei, ZHANG Hui-Min, PENG Jun-Ping, XING Ying, WANG Hui-Chao, FUJITA Takeshi, HIRATA Akihiko, LI Zhi, DING Hao, TANG Chen-Jia, WANG Meng, WANG Qing-Yan, HE Ke, JI Shuai-Hua, CHEN Xi, WANG Jun-Feng, XIA Zheng-Cai, LI Liang, WANG Ya-Yu, WANG Jian, WANG Li-Li, CHEN Ming-Wei, XUE Qi-Kun, MA Xu-Cun. Direct Observation of High-Temperature Superconductivity in One-Unit-Cell FeSe Films[J]. Chin. Phys. Lett., 2014, 31(1): 067402
[7] LI Xiao-Wei . Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions[J]. Chin. Phys. Lett., 2011, 28(4): 067402
[8] YOU Feng, WANG Zheng, XIE Qing-Lian, JI Lu, YUE Hong-Wei, ZHAO Xin-Jie, FANG Lan, YAN Shao-Lin. Fabrication and Properties of Double-Side Tl2Ba2CaCu2O8 Thin Film on CeO2 Buffered Sapphire Substrate[J]. Chin. Phys. Lett., 2010, 27(4): 067402
[9] LI Chun-Yan, LI Bo, Lü Xian-Yi, LI Ming-Ji, WANG Zong-Li, GU Chang-Zhi, JIN Zeng-Sun. Superconductivity in Heavily Boron-Doped Diamond Films Prepared by Electron Assisted Chemical Vapour Deposition Method[J]. Chin. Phys. Lett., 2006, 23(10): 067402
[10] WANG Shu-Fang, ZHU Ya-Bin, LIU Zhen, ZHOU Yue-Liang, ZHANG Qin, CHEN Zheng-Hao, LU Hui-Bin, YANG Guo-Zhen. Growth of MgB2 Thin Films by Chemical Vapor Deposition Using B2H6 as a Boron Source[J]. Chin. Phys. Lett., 2003, 20(8): 067402
Full text