Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 067402    DOI: 10.1088/0256-307X/31/6/067402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Anomalous Temperature Dependence of the Quality Factor in a Superconducting Coplanar Waveguide Resonator
ZHOU Pin-Jia1, WANG Yi-Wen1, WEI Lian-Fu1,2**
1Quantum Optoelectronics Laboratory, School of Physics, Southwest Jiaotong University, Chengdu 610031
2State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275
Cite this article:   
ZHOU Pin-Jia, WANG Yi-Wen, WEI Lian-Fu 2014 Chin. Phys. Lett. 31 067402
Download: PDF(813KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the measurements of the temperature dependence of the internal quality factor (Qi) of a microwave resonator, well below the superconducting transition temperature. The device is a quarter-wavelength niobium (Tc=9.2 K) coplanar waveguide resonator. The measured |S21| parameter shows typically the skewed Lorentzian distributions, from which the fitted quality factor monotonically decreases with the temperature increasing from 30 mK to 900 mK. It is observed that for the lower temperature range (i.e., at T<700 mK) the temperature dependence of the fitted Qi deviates significantly from the predictions of the usual Mattis–Bardeen theory. The measured 3 dB internal quality factor Q'i also verifies such an anomalous temperature dependence. Physically, this phenomenon could be attributed dominantly to the effects of the two-level systems in the device, rather than the usual temperature-dependent complex conductance.
Published: 26 May 2014
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  81.16.Nd (Micro- and nanolithography)  
  84.40.Az (Waveguides, transmission lines, striplines)  
  85.25.-j (Superconducting devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/067402       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/067402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Pin-Jia
WANG Yi-Wen
WEI Lian-Fu
[1] Mazin B A et al 2002 AIP Conf. Proc. 605 309
[2] Day K et al 2003 Nature 425 817
[3] Gao J S et al 2012 Appl. Phys. Lett. 101 142602
[4] Wallraff A et al 2007 Nature 431 162
[5] Sillanpaa M et al 2007 Nature 449 438
[6] Xiang Z L et al 2013 Rev. Mod. Phys. 85 623
[7] Knill E et al 2001 Nature 409 46
[8] Wang H et al 2009 Appl. Phys. Lett. 95 233508
[9] Barends R et al 2010 Appl. Phys. Lett. 97 023508
[10] Megrant A et al 2012 Appl. Phys. Lett. 100 113510
[11] Mattis D C and Bardeen J 1958 Phys. Rev. 111 412
[12] Mazin B A 2004 Microwave Kinetic Inductance Detectors (PhD dissertation) (California: California Institute of Technology)
[13] Gao J S et al 2008 Appl. Phys. Lett. 92 152505
[14] Kumar S et al 2008 Appl. Phys. Lett. 92 123503
[15] Mazin B A et al 2006 Appl. Phys. Lett. 89 222507
[16] Ponchak G E et al 2005 IEEE Trans. Microwave Theory Tech. 53 713
[17] Li H J et al 2013 Chin. Sci. Bull. 58 1
[18] Petersan P J and Anlage S M 1998 J. Appl. Phys. 84 3392
[19] Barends R et al 2007 IEEE Trans. Appl. Supercond. 17 263
[20] Glover R E and Tinkham M 1957 Phys. Rev. 108 243
[21] Zmuidzinas J 2012 Annu. Rev. Condens. Matter Phys. 3 169
[22] Calvo M 2008 Development of Kinetic Inductance Detectors for the Study of the Cosmic Microwave Background Polarization (PhD dissertation) (Roma: Sapienza University)
[23] Wisbey D S et al 2010 J. Appl. Phys. 108 093918
[24] Gao J S et al 2012 Appl. Phys. Lett. 101 142602
[25] Phillips W A 1987 Rep. Prog. Phys. 50 1657
[26] Zhang S L et al 2013 Chin. Phys. Lett. 30 088401
[27] Zhao N et al 2012 Chin. Phys. Lett. 29 088401
[28] Wang Y W et al 2013 J. Appl. Phys. 114 153109
Related articles from Frontiers Journals
[1] Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao, Qiang Zhao, Xing-Yu Chen, Mei-Hui Chen, Fang-Hui Zhu, Rui-Fen Dou, Hai-Wen Liu, Chang-Min Xiong, and Jia-Cai Nie. Anomalous Metallic State Driven by Magnetic Field at the LaAlO$_{3}$/KTaO$_{3}$ (111) Interface[J]. Chin. Phys. Lett., 2023, 40(3): 067402
[2] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 067402
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 067402
[4] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 067402
[5] Ying Xiang, Qing Li, Yueying Li, Huan Yang, Yuefeng Nie, and Hai-Hu Wen. Physical Properties Revealed by Transport Measurements for Superconducting Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ Thin Films[J]. Chin. Phys. Lett., 2021, 38(4): 067402
[6] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, and Lu Ji. Erratum: Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon [Chin. Phys. Lett. 36 (2019) 057401][J]. Chin. Phys. Lett., 2021, 38(2): 067402
[7] Yang Ma, Jiasen Niu, Wenyu Xing, Yunyan Yao, Ranran Cai, Jirong Sun, X. C. Xie, Xi Lin, and Wei Han. Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface[J]. Chin. Phys. Lett., 2020, 37(11): 067402
[8] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 067402
[9] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 067402
[10] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 067402
[11] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 067402
[12] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 067402
[13] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, Lu Ji. Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon[J]. Chin. Phys. Lett., 2019, 36(5): 067402
[14] Hui-Ying Liu, Jun-Ren Shi. Radiation-Induced Oscillating Gap States of Nonequilibrium Two-Dimensional Superconductors[J]. Chin. Phys. Lett., 2018, 35(6): 067402
[15] Yulong Huang, Zhongpei Feng, Shunli Ni, Jun Li, Wei Hu, Shaobo Liu, Yiyuan Mao, Huaxue Zhou, Fang Zhou, Kui Jin, Huabing Wang, Jie Yuan, Xiaoli Dong, Zhongxian Zhao. Superconducting (Li,Fe)OHFeSe Film of High Quality and High Critical Parameters[J]. Chin. Phys. Lett., 2017, 34(7): 067402
Viewed
Full text


Abstract