Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 057302    DOI: 10.1088/0256-307X/31/5/057302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Rectification Effect of the Heat Generation by Electric Current in a Quantum Dot Molecular
LI Bo-Xin1, ZHENG Jun1, CHI Feng2**
1College of New Energy, Bohai University, Jinzhou 121013
2College of Engineering, Bohai University, Jinzhou 121013
Cite this article:   
LI Bo-Xin, ZHENG Jun, CHI Feng 2014 Chin. Phys. Lett. 31 057302
Download: PDF(673KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the heat generation by an electric current in a quantum dot (QD) molecular coupled to a single-model phonon bath in the Coulomb blockade regime. It is found that when the system is driven out of equilibrium by the thermal bias applied across the two terminals of the structure, the heat flowing between the QD and the phonon bath can be very small for one direction of the thermal bias, while it becomes quite large when the corresponding direction of the thermal bias is reversed. The device thus operates as a heat rectifier or heat diode. Moreover, the heat generation can be suppressed to negative values by the thermal bias. We emphasize that the above-mentioned two effects are beyond the reach of the usual electric bias.
Published: 24 April 2014
PACS:  73.21.La (Quantum dots)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/057302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/057302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Bo-Xin
ZHENG Jun
CHI Feng
[1] Li N B, Ren J, Wang L, Zhang G, H?nggi P and Li B W 2012 Rev. Mod. Phys. 84 1045
[2] Rego L G C and Kirczenow G 1998 Phys. Rev. Lett. 81 232
[3] Blencowe M P 1999 Phys. Rev. B 59 4992
[4] Schwab K, Henriksen E A, Worlock J M and Roules M L 2000 Nature 404 974
[5] Yamamoto T and Watanabe K 2006 Phys. Rev. Lett. 96 255503
[6] Sun Q F and Xie X C 2007 Phys. Rev. B 75 155306
[7] Lü J T and Wang J S 2007 Phys. Rev. B 76 165418
[8] Wu B H and Cao J C 2009 J. Phys.: Condens. Matter 21 245301
[9] Balandin A 2011 Nat. Mater. 10 569
[10] Huang Z, Xu B Q, Chen Y C, Di Ventra M and Tao N J 2006 Nano Lett. 6 1240
[11] Huang Z, Chen F, D'Agosta R, Bennett P A, Di Ventra M and Tao N J 2007 Nat. Nanotechnol. 2 698
[12] Oron-Carl M and Krupke R 2008 Phys. Rev. Lett. 100 127401
[13] Wang J S, Wang J and Lü J T 2008 Eur. Phys. J. B 62 381
[14] Lazzeri M, Piscanec S, Mauri F, Ferrari A C and Robertson J 2005 Phys. Rev. Lett. 95 236802
[15] Liu J, Song J T, Sun Q F and Xie X C 2009 Phys. Rev. B 79 161309(R)
[16] Pei W, Xie X C and Sun Q F 2012 J. Phys.: Condens. Matter 24 415302
[17] Pei W and Sun Q F 2012 J. Appl. Phys. 112 124306
[18] Zhou L L and Li Y J 2012 Phys. Lett. A 376 2506
[19] Zhou L L 2011 Chin. Phys. Lett. 28 128504
[20] Zhou L L and Wei J N 2011 Phys. Lett. A 375 3916
[21] Zhou L L, Li S S, Wei J N and Wang S Q 2011 Phys. Rev. B 83 195303
[22] Zhou L L, Li S S and Zeng Z Y 2009 Chin. Phys. Lett. 26 037304
[23] Deng Y X, Yan X H, Xiao Y and Tang N S 2010 Phys. Lett. A 374 4375
[24] Wang Q, Xie H, Jiao H and Nie Y H 2013 Europhys. Lett. 101 47008
[25] Chen Q and Zhang Y M 2010 Commun. Theor. Phys. 54 171
[26] Chen Q and Deng Y H 2011 Commun. Theor. Phys. 56 517
[27] Chen Q, Xu M C and Wang Z Y 2013 Physica E 48 106
[28] Chen Q, Tang L M, Chen K Q and Zhao H K 2013 J. Appl. Phys. 114 084301
[29] Chen Q and Zhao H K 2008 Eur. Phys. J. B 64 237
[30] Chi F, Zheng J, Liu Y S and Guo Y 2012 Appl. Phys. Lett. 100 233106
[31] Chen Z Z, Lü R and Zhu B F 2005 Phys. Rev. B 71 165324
[32] Wang R Q, Zhou Y Q, Wang B G and Xing D Y 2007 Phys. Rev. B 75 045318
[33] Liu Y S, Chen H, Fan X H and Yang X F 2006 Phys. Rev. B 73 115310
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 057302
[2] Jiyuan Bai, Kongfa Chen, Pengyu Ren, Jianghua Li, Zelong He, and Li Li. Fano Effect and Spin-Polarized Transport in a Triple-Quantum-Dot Interferometer Attached to Two Ferromagnetic Leads[J]. Chin. Phys. Lett., 2020, 37(12): 057302
[3] Li-Guo Qin, Qin Wang. Modulating the Lasing Performance of the Quantum Dot-Cavity System by Adding a Resonant Driving Field[J]. Chin. Phys. Lett., 2017, 34(1): 057302
[4] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 057302
[5] Hui-Li Yin, Su-Ling Zhao, Zheng Xu, Li-Zhi Sun. Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films and the Influence of Various Hole-Transporting Layers on the Performance[J]. Chin. Phys. Lett., 2016, 33(03): 057302
[6] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 057302
[7] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 057302
[8] LI Jian, ZHANG Dong. Single- and Few-Electron States in Deformed Topological Insulator Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(4): 057302
[9] JEONG Heejun. Current Fluctuations in a Semiconductor Quantum Dot with Large Energy Spacing[J]. Chin. Phys. Lett., 2014, 31(12): 057302
[10] LV Xue-Qin, JIN Peng, CHEN Hong-Mei, WU Yan-Hua, WANG Fei-Fei, WANG Zhan-Guo. Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure[J]. Chin. Phys. Lett., 2013, 30(11): 057302
[11] A. Azhagu Parvathi, A. John Peter, Chang Kyoo Yoo. Nonlinear Optical Properties in a Quantum Dot of Some Polar Semiconductors[J]. Chin. Phys. Lett., 2013, 30(10): 057302
[12] LI Zhen-Shan, PAN Hui, LÜ Rong. Spin-Polarized Currents in Double Quantum Dots with Rashba Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2013, 30(8): 057302
[13] YU Hong-Yi, LUO Yu, YAO Wang . The Nuclear Dark State under Dynamical Nuclear Polarization[J]. Chin. Phys. Lett., 2013, 30(7): 057302
[14] QIAN Xin-Ye, CHEN Kun-Ji, HUANG Jian, WANG Yue-Fei, FANG Zhong-Hui, XU Jun, HUANG Xin-Fan . Room-Temperature Multi-Peak NDR in nc-Si Quantum-Dot Stacking MOS Structures for Multiple Value Memory and Logic[J]. Chin. Phys. Lett., 2013, 30(7): 057302
[15] SHI Yong, MA Zhong-Yuan, CHEN Kun-Ji, JIANG Xiao-Fan, LI Wei, HUANG Xin-Fan, XU Ling, XU Jun, FENG Duan . The Effect of Multiple Interface States and nc-Si Dots in a Nc-Si Floating Gate MOS Structure Measured by their GV Characteristics[J]. Chin. Phys. Lett., 2013, 30(7): 057302
Viewed
Full text


Abstract