Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 054201    DOI: 10.1088/0256-307X/31/5/054201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Multi-Band Absorption Properties and Near-Field Enhancement in Mid-Infrared Based on the Interference Theory
HENG Hang1,2**, YANG Li1
1Department of Physics, Nanjing Normal University, Nanjing 210097
2Center for Analysis and Testing, Nanjing Normal University, Nanjing 210097
Cite this article:   
HENG Hang, YANG Li 2014 Chin. Phys. Lett. 31 054201
Download: PDF(952KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We numerically study the multi-band absorption properties and near-field enhancement inside the microcavity based on the interference theory. The compact single unit cell consists of a gold square patch placed on the top of a metallic ground plane, separated by a dielectric layer. At the normal incidence of electromagnetic radiation, four bands of a maximum absorption of 98% are accomplished by appropriate sizes of the square patch. Furthermore, we demonstrate that the four bands, which are corresponding to the fundamental mode and higher modes of the standing wave, can be readily tuned in the mid-infrared region and associated with the near-field enhancement in the cuboid microcavity. Since chemical and biological fingerprints of the common functional groups can be found in the mid-infrared region, we may readily tune the multi-bands of interest in the mid-infrared range and identify the molecular stretches of groups. Moreover, the proposed structure is insensitive to the polarization of the incident wave due to the complete rotational symmetry (C4 symmetry). The unique properties of the optical metamaterial indicate that this approach is a promising strategy for surface-enhanced infrared absorption spectroscopy and for the tracking of characteristic molecular vibrational modes
Published: 24 April 2014
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.55.Sa (Microcavity and microdisk lasers)  
  25.40.Ny (Resonance reactions)  
  43.20.Ks (Standing waves, resonance, normal modes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/054201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/054201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HENG Hang
YANG Li
[1] Chen K et al 2012 ACS Nano 6 7998
[2] Nishijima Y et al 2012 Opt. Mater. Express 2 1367
[3] Du C L et al 2011 Appl. Opt. 50 4922
[4] Rai V N et al 2012 Appl. Opt. 51 2606
[5] Sun M et al 2006 Chin. Phys. Lett. 23 486
[6] Christensen J et al 2010 Phys. Rev. B 81 174104
[7] Xing Q R et al 2005 Chin. Phys. Lett. 22 1821
[8] Peng P et al 2012 J. Mater. Chem. 22 12997
[9] Lai W C et al 2012 Opt. Lett. 37 1208
[10] Rakhmanov A L et al 2010 Phys. Rev. B 81 07501
[11] Kocaman S et al 2011 Nat. Photon. 5 499
[12] Zhang S et al 2009 Phys. Rev. Lett. 102 023901
[13] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[14] Fang N et al 2005 Science 308 534
[15] Shin H et al 2004 Appl. Phys. Lett. 84 4421
[16] Chen L et al 2007 Opt. Lett. 32 1432
[17] Chen L et al 2013 Opt. Lett. 38 1379
[18] Landy N et al 2009 Phys. Rev. B 79 125104
[19] Shchegolkov D Y et al 2010 Phys. Rev. B 82 205117
[20] Hibbins A P and Sambles J R 2004 Phys. Rev. Lett. 92 147401
[21] Farahani J N et al 2007 Nanotechnology 18 125506
[22] Curto A G et al 2010 Science 329 930
[23] Feuillet-Palma C et al 2013 Sci. Rep. 3 1361
[24] Feuillet-Palma C et al 2012 Opt. Express 20 29121
[25] Liao P F and Wokaun A 1982 J. Chem. Phys. 76 751
[26] Chen H T 2012 Opt. Express 20 7165
[27] Todorov Y et al 2010 Opt. Express 18 13886
[28] Gorodetsky M L and I Ichenenko V S 1994 Opt. Commun. 113 133
Related articles from Frontiers Journals
[1] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 054201
[2] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 054201
[3] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 054201
[4] Hang Heng, Rong Wang. Extreme Light Concentration and High Absorption of the Double Cylindrical Microcavities[J]. Chin. Phys. Lett., 2016, 33(08): 054201
[5] Wan-Xia Huang, Guo-Ren Zhao, Juan-Juan Guo, Mao-Sheng Wang, Jian-Ping Shi. Nearly Perfect Absorbers Operating Associated with Fano Resonance in the Infrared Range[J]. Chin. Phys. Lett., 2016, 33(08): 054201
[6] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 054201
[7] LI Chun-Lai, GUO Jie, ZHANG Peng, YU Quan-Qiang, MA Wei-Tao, MIAO Xi-Gen, ZHAO Zhi-Ya, LUAN Lin. Planar Magnetic Metamaterial Slabs for Magnetic Resonance Imaging Applications[J]. Chin. Phys. Lett., 2014, 31(07): 054201
[8] LIAO Zhong-Wei, HUANG Ying-Zhou, WANG Xiao-Yong, CHAU Irene Yeung-Yeung, WANG Shu-Xia, WEN Wei-Jia. Near-Infrared Properties of Hybridized Plasmonic Rectangular Split Nanorings[J]. Chin. Phys. Lett., 2014, 31(06): 054201
[9] HENG Hang, YANG Li, YE Yong-Hong. Near-Field Enhancement and Absorption Properties of Metal-Dielectric-Metal Microcavities in the Mid-Infrared Range[J]. Chin. Phys. Lett., 2014, 31(1): 054201
[10] HOU Zhi-Ling**, KONG Ling-Bao, JIN Hai-Bo, CAO Mao-Sheng, LI Xiao, QI Xin. The Comprehensive Retrieval Method of Electromagnetic Parameters Using the Scattering Parameters of Metamaterials for Two Choices of Time-Dependent Factors[J]. Chin. Phys. Lett., 2012, 29(1): 054201
[11] HE Xiao-Yang, CHEN Qi, LI Lin-Cui, YANG Chun**, LI Biao, ZHOU Bang-Hua, TANG Chuan-Xiang . Nonresonant Metamaterials with an Ultra-High Permittivity[J]. Chin. Phys. Lett., 2011, 28(5): 054201
Viewed
Full text


Abstract