Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 047102    DOI: 10.1088/0256-307X/31/4/047102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Optoelectronic Properties, Elastic Moduli and Thermoelectricity of SrAlGa: An Ab Initio Study
Roshan Ali1, G. Murtaza2**, Y. Takagiwa3, R. Khenata4, Haleem Uddin2, H. Ullah1, S. A. Khan2
1Department of Physics, Government Post Graduate, Jahanzeb College, Saidu sharif, Swat, Pakistan
2Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar
3Department of Advanced Materials Science, The University of Tokyo, Japan
4LPQ3M Laboratory, Institute of Science and Technology, University of Mascara, Algeria
Cite this article:   
Roshan Ali, G. Murtaza, Y. Takagiwa et al  2014 Chin. Phys. Lett. 31 047102
Download: PDF(685KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Half-Heusler compounds are an impressive class of materials with a huge potential for different applications such as in future energy, especially in the fields of thermoelectrics and solar cells. We present ab initio total energy calculations within the modified Becke–Johnson generalized gradient approximation (mBJ-GGA) to obtain the physical properties of SrAlGa compounds. The structural, elastic, acoustic, electronic, chemical bonding, optical, and thermoelectric properties are calculated and compared with the available calculation data. The SrAlGa is found to be a small-band-gap (0.125–0.175 eV) material, suitable for thermoelectric applications with a relatively high Seebeck coefficient. Also, SrAlGa has the potential in the optoelectronic applications due to high optical conductivity and reflectivity in the infrared and visible region of electromagnetic spectra.
Received: 25 November 2013      Published: 25 March 2014
PACS:  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/047102       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/047102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Roshan Ali
G. Murtaza
Y. Takagiwa
R. Khenata
Haleem Uddin
H. Ullah
S. A. Khan
[1] Casper F, Graf T, Chadov S, Balke B and Felser C 2012 Semicond. Sci. Technol. 27 063001
[2] Asahi R, Morikawa T, Hazama H and Matsubara M 2008 J. Phys.: Condens. Matter 20 64227
[3] Poon S J 2001 Recent Trends in Thermoelectric Materials Research II, Semiconductors and Semimetals vol 70 ed Tritt T M (New York: Academic) p 37
[4] ?güt S and Rabe K M 1995 Phys. Rev. B 51 10443
[5] Jung D, Koo H J and Whangbo M H 2000 J. Mol. Struct.: THEOCHEM 527 113
[6] Kandpal H C, Felser C and Seshadri R 2006 J. Phys. D: Appl. Phys. 39 776
[7] Gruhn T 2010 Phys. Rev. B 82 125210
[8] Chadov S, Qi X, Kubler J, Fecher G H, Felser C and Zhang S C 2010 Nat. Mater. 9 541
[9] Lin H, Wray A, Xia Y, Xu S, Jia S, Cava R J, Bansil A and Hasan M Z 2010 Nat. Mater. 9 546
[10] Felser C, Fecher G H and Balke B 2007 Angew. Chem. Int. Ed. 46 668
[11] Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner G P, Uher C 2001 Appl. Phys. Lett. 79 4165
[12] Nolas G S, Poon J, Kanatzidis M G 2006 MRS Bull. 31 199
[13] Balke B, Barth J, Schwall M, Fecher G H, Felser C 2011 J. Electron. Mater. 40 702
[14] Anindya R, Joseph W B, Karin M R and David V 2012 Phys. Rev. Lett. 109 037602
[15] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 Wien2k An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties (Technische Universit ?t Wien Austria)
[16] Koelling D D 1972 J. Phys. Chem. Solids 33 1335
[17] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[18] Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116
[19] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[20] Wong K M, Alay-e-Abbas S M, Shaukat A, Fang Y and Lei Y 2013 J. Appl. Phys. 113 014304
[21] Wong K M, Alay-e-Abbas S M, Fang Y, Shaukat A and Lei Y 2013 J. Appl. Phys. 114 034901
[22] Murnaghan F D 1944 Proc. Natl. Acad. Sci. U.S.A. 30 244
[23] Wang J and Yip S 1993 Phys. Rev. Lett. 71 4182
[24] Tvergaard V and Hutshinson J W 1988 J. Am. Ceram. Soc. 71 157
[25] Hill R 1952 Proc. Phys. Soc. London A 65 349
[26] Voigt W 1928 Lehrbush der Kristallphysik (Taubner, Leipzig)
[27] Reuss A and Angew A 1929 Mater. Phys. 9 49
[28] Wu Z J, Zhao E J, Xiang H P, Hao X F and Liu X J 2007 Phys. Rev. B 76 054115
[29] Peng F, Chen D, Fu H and Cheng X 2009 Phys. Status Solidi B 246 71
[30] Fu H, Li D, Peng F, Gao T and Cheng X 2008 Comput. Mater. Sci. 44 774
[31] Pugh S F 1954 Philos. Mag. 45 823
[32] Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook ed Frantsevich I N (Naukova Dumka, Kiev) pp 60–180
[33] Johnston G, Keeler R, Rollins and Spicklemire S 1996 The Consortium for Upper-Level Physics Software (New York: John Wiley)
[34] Schreiber E, Anderson O L and Soga N 1973 Elastic Constants and Their Measurement (New York: McGraw-Hill)
[35] Engel E and Vosko S H 1993 Phys. Rev. B 47 13164
[36] Gruhn T 2010 Phys. Rev. B 82 125210
[37] Mahan G D and Sofo J O 1996 Proc. Natl. Acad. Sci. U.S.A. 93 7436
[38] Rao A, Ji X and Tritt T M 2006 Mater. Res. Bull. 31 218
[39] Kandpal H C, Felser C and Seshadri R 2006 J. Phys. D 39 776
[40] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
Related articles from Frontiers Journals
[1] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 047102
[2] Hong-Ping Yang, Hai-Hong Bao, Li-Li Han, Wen-Juan Yuan, Jun Luo, Jing Zhu. Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets[J]. Chin. Phys. Lett., 2018, 35(12): 047102
[3] K. Ephraim Babu, N. Murali, K. Vijaya Babu, B. Kishore Babu, V. Veeraiah. Elastic and Optoelectronic Properties of KCdF3: ab initio Calculations through LDA/GGA/TB-mBJ within FP-LAPW Method[J]. Chin. Phys. Lett., 2015, 32(01): 047102
[4] LI Le-Le, GAO Teng-Fei, ZHANG Ruan-Yu, ZHANG Hong. Multiscale Study of Hydrogen Adsorption on Six Designed Covalent Organic Frameworks Based on Porphyrazine, Cyclobutane and Scandium[J]. Chin. Phys. Lett., 2014, 31(09): 047102
[5] HUANG Duo-Hui, YANG Jun-Sheng, CAO Qi-Long, WAN Ming-Jie, LI Qiang, SUN Liang, WANG Fan-Hou. Effect of Mg and Fe Doping on Optical Absorption of LiNbO3 Crystal through First Principles Calculations[J]. Chin. Phys. Lett., 2014, 31(03): 047102
[6] Hayatullah, G. Murtaza, R. Khenata, S. Naeem, M. N. Khalid, S. Mohammad. First Principle Calculations of the Ground and Excited State Properties of RbPbF3[J]. Chin. Phys. Lett., 2013, 30(9): 047102
[7] SHAO Xi. Indication of Low-Energy BC5 Structures[J]. Chin. Phys. Lett., 2010, 27(1): 047102
[8] YUAN Jin-Hui, YU Chong-Xiu, SANG Xin-Zhu, LI Wen-Jing, ZHOU Gui-Yao, LI Shu-Guang, HOU Lan-Tian. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths[J]. Chin. Phys. Lett., 2009, 26(3): 047102
[9] YUAN Jin-Hui, HOU Lan-Tian, ZHOU Gui-Yao, WEI Dong-Bin, CHEN Chao, WANG Qing-Yue, HU Ming-Lie, LIU Bo-Wen. Numerical Simulation and Experimental Analysis of Photonic Band Gap in Hollow-Core Photonic Crystal Fibres[J]. Chin. Phys. Lett., 2008, 25(5): 047102
[10] ZHANG Hong, TANG Jin, CHENG Xin-Lu. Structural, Electronic Properties and Chemical Bonding of Borate Li4CaB2O6 under High Pressure: an Ab Initio Investigation[J]. Chin. Phys. Lett., 2008, 25(2): 047102
[11] LI Yu-Xian. Break Cohesion of Metal Contacts due to Voltage Bias[J]. Chin. Phys. Lett., 2006, 23(9): 047102
[12] LI Xiao-Feng, CHEN Xiang-Rong, JI Guang-Fu, MENG Chuan-Min. Ab Initio Calculations of Elastic Constants of Li2O under Pressure[J]. Chin. Phys. Lett., 2006, 23(4): 047102
[13] GUAN Xi-Meng, YU Zhi-Ping. Supercell Approach in Tight-Binding Calculation of Si and Ge Nanowire Bandstructures[J]. Chin. Phys. Lett., 2005, 22(10): 047102
[14] ZHAO Pu-Qin, HU Dong-Sheng, WU Xing-Long. Quantum Confinement of Si Nanosphere with Radius Smaller than 1.2nm[J]. Chin. Phys. Lett., 2005, 22(6): 047102
[15] DUAN Yi-Feng, YI Lin. Orbital Hybridization of the Ferroelectric Rb2Cd2 (SO4)3: Origin of Domain Walls[J]. Chin. Phys. Lett., 2005, 22(2): 047102
Viewed
Full text


Abstract