Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 046801    DOI: 10.1088/0256-307X/31/4/046801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers
ZHANG Zhi-Qiang1,2, LIU Yi-Peng1, DAI Yan-Feng1, CHEN Jiang-Shan1, MA Dong-Ge1**, ZHANG Hong-Mei3
1State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022
2University of Chinese Academy of Sciences, Beijing 100049
3Department of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023
Cite this article:   
ZHANG Zhi-Qiang, LIU Yi-Peng, DAI Yan-Feng et al  2014 Chin. Phys. Lett. 31 046801
Download: PDF(647KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Highly efficient phosphorescent white organic light-emitting diodes (WOLEDs) with stable emission spectra are successfully fabricated by using an RGB three-color separately monochromatic emission layer (EML) structure. The EML consists of a sequence of bis(2-methyldibenzo[f, h]quinoxaline) (acetylacetonate) iridium (III) (Ir(MDQ)(acac)) doped tris(4-carbazoyl-9-ylphenyl)amine (TCTA) as the red emission layer, iridium, tris(2-phenylpyidine)(Ir(ppy)) doped TCTA as the green emission layer and iridium(III) [bis(4, 6-difuorophenyl)-pyridinato-N, C2']picolinate (FIrpic) doped a mixed-host of TCTA and tris(4-carbazoyl-9-ylphenyl)amine (26DCz PPy) as the blue emission layer. Without using any out-coupling techniques, the resulting WOLEDs achieve a power efficiency of 42 lm/W at 100 cd/m2, and 34 lm/W at 1000 cd/m2. The WOLEDs also show excellent spectrum stability with bias voltages, remaining the Commission Internationale de L'Eclairage coordinates at (0.44, 0.43) from 1000 cd/m2 to 10000 cd/m2 and the color rendering index is as high as over 80. We contribute the stable emission spectrum to the RGB separate EML structure that successfully suppresses the undesired competition between host-guest energy transfer and direct exciton formation on emissive dopants by effectively controlling the position of exciton recombination region.
Received: 12 December 2013      Published: 25 March 2014
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  79.60.-i (Photoemission and photoelectron spectra)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/046801       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/046801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Zhi-Qiang
LIU Yi-Peng
DAI Yan-Feng
CHEN Jiang-Shan
MA Dong-Ge
ZHANG Hong-Mei
[1] Kido J et al 1994 Appl. Phys. Lett. 64 815
[2] D'Andrade B W and Forrest S R 2004 Adv. Mater. 16 1585
[3] So F et al 2008 MRS Bull. 33 663
[4] D'Andrade B W et al 2004 Adv. Mater. 16 624
[5] D'Andrade B W 2007 Nat. Photon. 1 33
[6] Laamnsky S et al 2001 J. Am. Chem. Soc. 123 4304
[7] Cocchi M et al 2007 Adv. Funct. Mater. 17 285
[8] Ho C L et al 2007 Adv. Funct. Mater. 17 2925
[9] Huang W S et al 2004 Chem. Mater. 16 2480
[10] Su S J et al 2008 Adv. Mater. 20 4189
[11] Sun Y R and Forrest S R 2008 Organic Electron. 9 994
[12] King S M et al 2006 Adv. Funct. Mater. 16 1043
[13] Ho M H et al 2007 Appl. Phys. Lett. 91 233507
[14] Choulis S A et al 2006 Adv. Funct. Mater. 16 1075
[15] Kawamura Y et al 2005 Appl. Phys. Lett. 86 071104
[16] Sasabe H et al 2010 Adv. Mater. 22 5003
[17] Chang Y L et al 2013 Adv. Funct. Mater. 23 705
[18] Sun Y R 2007 Appl. Phys. Lett. 91 263503
[19] Reineke S et al 2009 Nature 459 234
[20] Wang Q and Ma D G 2010 Chem. Soc. Rev. 39 2387
[21] Wang Q et al 2010 Org. Electron. 11 238
[22] Wang Q et al 2009 Adv. Funct. Mater. 19 84
[23] Su S J et al 2008 Chem. Mater. 20 1691
[24] Kepler R G et al 1963 Phys. Rev. Lett. 10 400
[25] He G et al 2004 Appl. Phys. Lett. 85 3911
[26] Watanabe S et al 2007 Jpn. J. Appl. Phys. 46 1186
[27] Dai G Z et al 2005 Chin. Phys. B 14 2590
Related articles from Frontiers Journals
[1] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 046801
[2] Chi Ding, Junjie Wang, Yu Han, Jianan Yuan, Hao Gao, and Jian Sun. High Energy Density Polymeric Nitrogen Nanotubes inside Carbon Nanotubes[J]. Chin. Phys. Lett., 2022, 39(3): 046801
[3] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 046801
[4] Rui-Chun Xiao, Zibo Wang, Zhi-Qiang Zhang, Junwei Liu, and Hua Jiang. Magnus Hall Effect in Two-Dimensional Materials[J]. Chin. Phys. Lett., 2021, 38(5): 046801
[5] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 046801
[6] Yi-Feng Hu, Xuan Guo, Qing-Qian Qiu, Tian-Shu Lai. Characteristics of Sb$_{6}$Te$_{4}$/VO$_{2}$ Multilayer Thin Films for Good Stability and Ultrafast Speed Applied in Phase Change Memory[J]. Chin. Phys. Lett., 2018, 35(9): 046801
[7] Xiao-Qin Zhu, Rui Zhang, Yi-Feng Hu, Tian-Shu Lai, Jian-Hao Zhang, Hua Zou, Zhi-Tang Song. Crystallization Process of Superlattice-Like Sb/SiO$_{2}$ Thin Films for Phase Change Memory Application[J]. Chin. Phys. Lett., 2018, 35(5): 046801
[8] Hui-Zhen Guo, An-Quan Jiang. Thickness Effect on (La$_{0.26}$Bi$_{0.74}$)$_{2}$Ti$_{4}$O$_{11}$ Thin-Film Composition and Electrical Properties[J]. Chin. Phys. Lett., 2018, 35(2): 046801
[9] Yi Ren, Fang Cheng. Ballistic Transport through a Strained Region on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2017, 34(2): 046801
[10] Fang Cheng, Bing He. Anisotropic Ballistic Transport through a Potential Barrier on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2016, 33(05): 046801
[11] Long Du, Yong-Long Wang, Guo-Hua Liang, Guang-Zhen Kang, Hong-Shi Zong. Schr?dinger Equation of a Particle on a Rotating Curved Surface[J]. Chin. Phys. Lett., 2016, 33(03): 046801
[12] ZHANG Shi-Ying, XIU Xiang-Qian, HUA Xue-Mei, XIE Zi-Li, LIU Bin, CHEN Peng, HAN Ping, LU Hai, ZHANG Rong, ZHENG You-Dou. Synthesis and Growth Mechanism: A Novel Fishing Rod-Shaped GaN Nanorods[J]. Chin. Phys. Lett., 2014, 31(05): 046801
[13] ZHANG Shi-Ying, XIU Xiang-Qian, LIN Zeng-Qin, HUA Xue-Mei, XIE Zi-Li, ZHANG Rong, ZHENG You-Dou . The Formation and Characterization of GaN Hexagonal Pyramids[J]. Chin. Phys. Lett., 2013, 30(5): 046801
[14] DENG Yuan, LIU Jing, WANG Yao, and LIANG Li-Xing. Sacrifice-Template Synthesis of CdTe Nanorod Arrays in Glycol via a Solvothermal Process[J]. Chin. Phys. Lett., 2012, 29(8): 046801
[15] WANG Guo-Biao, XIONG Huan, LIN You-Xi, FANG Zhi-Lai, KANG Jun-Yong, DUAN Yu, SHEN Wen-Zhong. Green Emission from a Strain-Modulated InGaN Active Layer[J]. Chin. Phys. Lett., 2012, 29(6): 046801
Viewed
Full text


Abstract