Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 035203    DOI: 10.1088/0256-307X/31/3/035203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Numerical Simulation on the Production Mechanism of Surface-Wave Plasmas Sustained along a Metal Rod
ZHU Long-Ji1, CHEN Zhao-Quan1**, YIN Zhi-Xiang1, WANG Guo-Dong2, XIA Guang-Qing3, HU Ye-Lin1, ZHENG Xiao-Liang1, ZHOU Meng-Ran1, CHEN Ming2, LIU Ming-Hai2
1College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001
2State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074
3State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024
Cite this article:   
ZHU Long-Ji, CHEN Zhao-Quan, YIN Zhi-Xiang et al  2014 Chin. Phys. Lett. 31 035203
Download: PDF(862KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For interpreting the production mechanism of surface-wave plasmas sustained along a metal rod, electromagnetic simulation on the electromagnetic field distributions and particle-in-cell/Monte Carlo collision (PIC/MCC) simulation of the ionization process are present. The results show that the enhanced electric field of surface plasmon polaritons (SPPs) can be excited in the ion sheath layer between the negative-voltage metal rod and the surface-wave plasmas, which is responsible for maintaining the plasma discharge. Moreover, the spatio-temporal evolutions of plasma density and electric fields are simulated by the PIC/MCC model. It is further suggested that the expanded ion sheath layer can extend the length of plasma domain by increasing the plasma absorbed energy from SPPs.
Received: 02 December 2013      Published: 28 February 2014
PACS:  52.50.Sw (Plasma heating by microwaves; ECR, LH, collisional heating)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.40.Fd (Plasma interactions with antennas; plasma-filled waveguides)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/035203       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/035203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Long-Ji
CHEN Zhao-Quan
YIN Zhi-Xiang
WANG Guo-Dong
XIA Guang-Qing
HU Ye-Lin
ZHENG Xiao-Liang
ZHOU Meng-Ran
CHEN Ming
LIU Ming-Hai
[1] Sugai H, Ghanashev I and Nagatsu M 1998 Plasma Sources Sci. Technol. 7 192
[2] Nagatsu M, Naito K, Ogino A and Nanko S 2006 Plasma Sources Sci. Technol. 15 37
[3] Kousaka H and Ono K 2003 Plasma Sources Sci. Technol. 12 273
[4] Wu C F, Zhan R J, Wen X H and Huang W D 2001 IEEE Trans. Plasma Sci. 29 13
[5] Chen Z Q, Liu M H, Zhou P Q, Chen W, Lan C H and Hu X W 2008 Plasma Sci. Technol. 10 655
[6] Xu X, Liu F, Zhou Q H, Liang B, Liang Y Z and Liang R Q 2008 Appl. Phys. Lett. 92 011501
[7] Chen Z Q, Liu M H, Lan C H, Chen W, Luo Z Q and Hu X W 2008 Chin. Phys. Lett. 25 4333
[8] Liang Y Z, Ou Q R, Liang B and Liang R Q 2008 Chin. Phys. Lett. 25 1761
[9] Wu T J, Guan W J, Tsai C M, Yeh W Y and Kou C S 2001 Phys. Plasmas 8 3195
[10] Wang Y, Cao J, Wang G, Wang L, Zhu Y and Niu T 2006 Phys. Plasmas 13 073301
[11] Henriques J, Tatarova E and Dias F M 2008 J. Appl. Phys. 103 103304
[12] Bowers K J and Birdsall C K 2002 Phys. Plasmas 9 2405
[13] Cooperberg D J and Birdsall C K 1998 Plasma Sources Sci. Technol. 7 41
[14] Bliokh Y P, Felsteiner J and Slutsker Y Z 2005 Phys. Rev. Lett. 95 165003
[15] Bliokh Y P, Brodsky Y L, Chashka K B, Felsteiner J and Slutsker Y Z 2010 Phys. Plasmas 17 083302
[16] Chen Z Q, Liu M H, Lan C H, Chen W, Tang L, Luo Z Q, Yan B R, Lv J H and Hu X W 2009 Chin. Phys. B 18 3484
[17] Chen Z Q, Liu M H, Tang L, Hu P and Hu X W 2009 J. Appl. Phys. 106 013314
[18] Chen Z Q, Liu M H, Hong L L, Zhou Q Y, Cheng L L and Hu X W 2011 Phys. Plasmas 18 013505
[19] Kousaka H, Xu J Q and Umehara N 2005 Jpn. J. Appl. Phys. 44 1052
[20] Kousaka H and Umehara N 2006 Vacuum 80 806
[21] Kousaka H, Xu J Q and Umehara N 2006 Vacuum 80 1154
[22] Chen Z Q, Liu M H, Zhou Q Y, Hu Y L, Yang A, Zhu L J and Hu X W 2011 Chin. Phys. Lett. 28 045201
[23] Chen Z Q, Xia G Q, Zhou Q Y, Hu Y L, Zheng X L, Zheng Z, Hong L L, Li P, Huang Y R and Liu M H 2012 Rev. Sci. Instrum. 83 084701
[24] Chen Z Q, Liu M H, Xia G Q and Huang Y R 2012 IEEE Trans. Plasma Sci. 40 2861
[25] Chen Z Q, Ye Q B, Xia G Q, Hong L L, Hu Y L, Cheng L L, Zheng X L, Li P, Zhou Q Y, Zheng Z and Liu M H 2013 Phys. Plasmas 20 033502
[26] Chen Z Q, Xia G Q, Liu M H, Zheng X L, Hu Y L, Li P, Xu G L, Hong L L, Sheng H Y and Hu X W 2013 Acta Phys. Sin. 62 195204 (in Chinese)
[27] Chen Z Q, Liu M H, Tang L, Lv J H and Hu X W 2010 Chin. Phys. Lett. 27 025205
[28] Chang X J, Kunii K, Liang R Q and Nagatsu M 2013 J. Appl. Phys. 114 183302
Related articles from Frontiers Journals
[1] M. S. Bawa'aneh, A. M. Al-Khateeb, Y. -c. Ghim. Resistance and Reactance of Monopole Fields Induced by a Test Charge Drifting Off-Axis in a Cold and Collisional Cylindrical Plasma[J]. Chin. Phys. Lett., 2018, 35(8): 035203
[2] Yi-Fan Yan, Zhong-Tian Wang, Zhi-Xiong He, Li-Ming Yu, Zhan-Hui Wang, Jia-Qi Dong, Hui-Dong Li, Hao Feng. Theoretical Analysis of the Frequency Jump in E-fishbone Experiments[J]. Chin. Phys. Lett., 2016, 33(01): 035203
[3] LI Xin-Xia, XIANG Nong, GAN Chun-Yun. Effect of Wave Accessibility on Lower Hybrid Wave Current Drive in Experimental Advanced Superconductor Tokamak with H-Mode Operation[J]. Chin. Phys. Lett., 2015, 32(03): 035203
[4] Mansour Khoramabadi, S. Farhad Masoudi. Numerical Examination of the Effects of Ion Thermal Flow on Plasma Sheath Characteristics[J]. Chin. Phys. Lett., 2013, 30(8): 035203
[5] CHEN Shao-Yong, WANG Zhong-Tian, TANG Chang-Jian. Excitation of Internal Kink Mode by Circulating Supra-thermal Electrons[J]. Chin. Phys. Lett., 2012, 29(2): 035203
[6] HU Ye-Lin, CHEN Zhao-Quan, **, LIU Ming-Hai**, HONG Ling-Li, LI Ping, ZHENG Xiao-Liang, XIA Guang-Qing**, HU Xi-Wei . Observation of Hot Electrons in Surface-Wave Plasmas Excited by Surface Plasmon Polaritons[J]. Chin. Phys. Lett., 2011, 28(11): 035203
[7] CHEN Zhao-Quan, **, LIU Ming-Hai***, ZHOU Qi-Yan, HU Ye-Lin, YANG An, ZHU Long-Ji, HU Xi-Wei . Numerical Reproduction of Spatio-Temporal Evolution of Surface Plasmon Polaritons at Dielectric-Plasma Interface[J]. Chin. Phys. Lett., 2011, 28(4): 035203
[8] CHEN Zhao-Quan, LIU Ming-Hai, TANG Liang, LV Jian-Hong, HU Xi-Wei. Surface Wave Analysis of Planar-Type Overdense Plasma with Surface Plasmon Polariton Resonance[J]. Chin. Phys. Lett., 2010, 27(2): 035203
[9] WANG Xiao-Jie, LIU Fu-Kun, ZHAO Lian-Min, JIA Hua, LIU Hong-Bao, KUANGGuang-Li. Design of a TE10-TE30 Rectangular Mode Converter for 4.6GHz LHCD Launcher in the Experimental Advanced Superconducting Tokamak[J]. Chin. Phys. Lett., 2009, 26(2): 035203
[10] CHEN Zhao-Quan, LIU Ming-Hai, LAN Chao-Hui, CHEN Wei, LUO Zhi-Qing, HU Xi-Wei. Estimation of Plasma Density by Surface Plasmons for Surface-Wave Plasmas[J]. Chin. Phys. Lett., 2008, 25(12): 035203
[11] YANG Jin-Wei, ZHANG Yi-Po, LIAO Min, HU Li-Qun, LI Xu, SONG Xian-Ying, LIN Shi-Yao, LI Yong-Ge, LUO Cui-Wen, CHEN Liao-Yuan, RAO Jun, YANG Qing-Wei. Avalanche Phenomenon of Superthermal Electrons Measured by SDD with New SPHA during ECRH[J]. Chin. Phys. Lett., 2008, 25(3): 035203
[12] LIU Liang, ZHANG Gui-Xin, FENG Jian, WANG Xin-Xin, LUO Cheng-Mu. A Microwave Air Plasma Source under Atmospheric Pressure[J]. Chin. Phys. Lett., 2008, 25(3): 035203
[13] LIU Ming-Hai, HU Xi-Wei, JIANG Zhong-He, ZHANG Shu, PAN Yuan. Finite-Difference Time-Domain Analysis of Wave Propagation in a Thin Plasma Layer[J]. Chin. Phys. Lett., 2006, 23(2): 035203
[14] WANG Zhong-Tian, LONG Yong-Xing, DONG Jia-Qi, WANG Long, Fulvio Zonca. Fishbone Instability Excited by Barely Trapped Electrons[J]. Chin. Phys. Lett., 2006, 23(1): 035203
[15] CHEN Zhong-Yong, WAN Bao-Nian, SHI Yue-Jiang, HU Li-Qun, XU Han-Dong. Ohmic Radio-Frequency Synergy Current Drive and Transformer Recharging Experiments in the HT-7 Tokamak[J]. Chin. Phys. Lett., 2005, 22(7): 035203
Viewed
Full text


Abstract