Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 030304    DOI: 10.1088/0256-307X/31/3/030304
GENERAL |
Quantum Discord Behavior about Two-Qubit Heisenberg XYZ Model with Decoherence
SONG Le, YANG Guo-Hui**
School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004
Cite this article:   
SONG Le, YANG Guo-Hui 2014 Chin. Phys. Lett. 31 030304
Download: PDF(553KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the properties of quantum discord dynamics of a two-qubit Heisenberg XYZ system which is influenced by the environmental decoherence under an external nonuniform magnetic field. It shows that the influence of the parameters on the system heavily rely on the selection of the initial states. One point shows that the environmental decoherence cannot entirely destroy the quantum correlation, and properly controlling the parameters can inhibit the decoherence. Moreover, it presents that the inhomogeneous magnetic field cannot affect the steady quantum discord (QD), while the uniform magnetic field and the anisotropy coupling constant will change the steady QD. These investigations imply that one can obtain larger steady QD values by reasonably adjusting parameters on quantum correlation in solid state systems.
Received: 06 September 2013      Published: 28 February 2014
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  75.10.Pq (Spin chain models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/030304       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/030304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Le
YANG Guo-Hui
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[3] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[4] Bell J S 1964 Physics 1 195
[5] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[6] Zurek W H 2003 Rev. Mod. Phys. 75 715
[7] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[8] Brennen G K, Deutsch I H and Jessen P S 2000 Phys. Rev. A 61 062309
[9] Mandel O, Greiner M, Widera A et al 2003 Nature 425 937
[10] Hagley E, Maitre X, Nogues G et al 1997 Phys. Rev. Lett. 79 1
[11] Rauschenbeutel A, Nogues G, Osnaghi S et al 2000 Science 288 2024
[12] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[13] Henderson L and Vedral V 2000 Phys. Rev. Lett. 84 2263
[14] Luo S 2008 Phys. Rev. A 77 022301
[15] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[16] Luo S and Fu S 2010 Phys. Rev. A 82 034302
[17] Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401
[18] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[19] Chen L, Chitambar E, Modi K and Vacanti G 2011 Phys. Rev. A 83 020101
[20] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[21] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[22] Datta A and Gharibian S 2009 Phys. Rev. A 79 042325
[23] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[24] Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301
[25] Subrahmanyam V 2004 Phys. Rev. A 69 034304
[26] Wang X 2001 Phys. Rev. A 64 012313
[27] Loss D and Di Vincenzo D P 1998 Phys. Rev. A 57 120
Burkard G, Loss D and Di Vincenzo D P 1999 Phys. Rev. B 59 2070
[28] Kane B E 1998 Nature 393 133
[29] Vrijen R, Yablonovitch, Wang K, Jiang H W et al 2000 Phys. Rev. A 62 12306
[30] Sorensen A, Duan L M, Cirac J I and Zoller P 2001 Nature 409 63
[31] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[32] Carmichael H J 1999 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Plank Equantions (Berlin: Springer-Verlag)
[33] Lindlad G 1976 Commun. Math. Phys. 48 199
[34] Maziero J, Céleri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 030304
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 030304
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 030304
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 030304
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 030304
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 030304
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 030304
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 030304
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 030304
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 030304
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 030304
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 030304
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 030304
[14] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 030304
[15] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 030304
Viewed
Full text


Abstract