Chin. Phys. Lett.  2014, Vol. 31 Issue (2): 028501    DOI: 10.1088/0256-307X/31/2/028501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Influence of ITO, Graphene Thickness and Electrodes Buried Depth on LED Thermal-Electrical Characteristics Using Numerical Simulation
XUE Sheng-Jie1, FANG Liang1**, LONG Xing-Ming2**, LU Yi1, WU Fang1, LI Wan-Jun1, ZUO Jia-Qi2, ZHANG Shu-Fang3**
1Department of Applied Physics, Chongqing University, Chongqing 401331
2Physics Department, Chongqing Normal University, Chongqing 400047
3College of Software, Chongqing College of Electronic Engineering, Chongqing 401331
Cite this article:   
XUE Sheng-Jie, FANG Liang, LONG Xing-Ming et al  2014 Chin. Phys. Lett. 31 028501
Download: PDF(725KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Finite elements methods are used to investigate the thermal?electrical characteristics of gallium?nitride (GaN) light-emitting diodes (LEDs) with different transparent conductive layers (TCLs) and buried depths of electrodes, where the transparent conductive layers include indium tin oxide (ITO), graphene (Gr) and the combination of them (ITO/Gr). The optimal material parameters and the precision and accuracy of the simulation model are validated. Moreover, the parameters' sensitivity analysis is carried out as well. The results indicate that the LED with the TCL of a 100-nm ITO or 4-layer Gr has a good thermal-electrical performance from the viewpoint of the maximum temperature and the current density deviation of multiple quantum well (MQW), where the maximum temperature occurs at the n-Pad rather than p-Pad. The compound TCL with a 20-nm ITO and 3-layer Gr reaches a thermal-electrical performance better than that of a 100-nm ITO or 4-layer Gr. Moreover, their maximum temperatures decrease about -0.43% and 1.21%, and the current density uniformities increase up to -6.09% and 17.41%, respectively. Furthermore, when the electrode buried depth is 0.51 μm, the thermal-electrical performance of the GaN LEDs can be further improved.
Received: 16 September 2013      Published: 28 February 2014
PACS:  85.30.-z (Semiconductor devices)  
  66.70.Df (Metals, alloys, and semiconductors)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/2/028501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I2/028501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XUE Sheng-Jie
FANG Liang
LONG Xing-Ming
LU Yi
WU Fang
LI Wan-Jun
ZUO Jia-Qi
ZHANG Shu-Fang
Related articles from Frontiers Journals
[1] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 028501
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 028501
[3] Liang-Sen Feng, Zhe Liu, Ning Zhang, Bin Xue, Jun-Xi Wang, Jin-Min Li. Effect of Nanorod Diameters on Optical Properties of GaN-Based Dual-Color Nanorod Arrays[J]. Chin. Phys. Lett., 2019, 36(2): 028501
[4] Yan-Nan Xu, Jin-Shun Bi, Gao-Bo Xu, Bo Li, Kai Xi, Ming Liu, Hai-Bin Wang, Li Luo. Total Ionization Dose Effects on Charge Storage Capability of Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$-Based Charge Trapping Memory Cell[J]. Chin. Phys. Lett., 2018, 35(11): 028501
[5] Mei Li, Jin-Shun Bi, Yan-Nan Xu, Bo Li, Kai Xi, Hai-Bin Wang, Jing-Liu, Jin-Li, Lan-Long Ji, Li Luo, Ming Liu. Total Ionizing Dose Effects of 55-nm Silicon-Oxide-Nitride-Oxide-Silicon Charge Trapping Memory in Pulse and DC Modes[J]. Chin. Phys. Lett., 2018, 35(7): 028501
[6] Yan-Fei Liu, Dong-Dong Yang, Li-Xin Wang, Qi Li. Directional Analysis of the Chaotic Superlattice around the Equilibrium Point in the Phase Space[J]. Chin. Phys. Lett., 2018, 35(4): 028501
[7] Meng-Ying Zhang, Zhi-Yuan Hu, Zheng-Xuan Zhang, Shuang Fan, Li-Hua Dai, Xiao-Nian Liu, Lei Song. Total Ionizing Dose Response of Different Length Devices in 0.13μm Partially Depleted Silicon-on-Insulator Technology[J]. Chin. Phys. Lett., 2017, 34(8): 028501
[8] Yi-Ze Wang, Chang Liu, Jian-Hui Cai, Qiang Liu, Xin-Ke Liu, Wen-Jie Yu, Qing-Tai Zhao. Experimental $I$–$V$ and $C$–$V$ Analysis of Schottky-Barrier Metal-Oxide-Semiconductor Field Effect Transistors with Epitaxial NiSi$_{2}$ Contacts and Dopant Segregation[J]. Chin. Phys. Lett., 2017, 34(7): 028501
[9] Xin Tan, Xing-Ye Zhou, Hong-Yu Guo, Guo-Dong Gu, Yuan-Gang Wang, Xu-Bo Song, Jia-Yun Yin, Yuan-Jie Lv, Zhi-Hong Feng. Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al$_{2}$O$_{3}$ Gate Dielectric[J]. Chin. Phys. Lett., 2016, 33(09): 028501
[10] Xiao-Peng Lv, Hui Wang, Ling-Qiang Meng, Xiao-Fang Wei, Yong-Zhen Chen, Xiang-Bin Kong, Jian-Jun Liu, Jian-Xin Tang, Peng-Fei Wang, Ying Wang. High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter[J]. Chin. Phys. Lett., 2016, 33(08): 028501
[11] Quan-Xi Yan, Shu-Fang Zhang, Xing-Ming Long, Hai-Jun Luo, Fang Wu, Liang Fang, Da-Peng Wei, Mei-Yong Liao. Numerical Simulation on Thermal-Electrical Characteristics and Electrode Patterns of GaN LEDs with Graphene/NiO$_x$ Hybrid Electrode[J]. Chin. Phys. Lett., 2016, 33(07): 028501
[12] Jin-Feng Feng, Chang Liu, Wen-Jie Yu, Ying-Hong Peng. Oxygen Scavenging Effect of LaLuO$_{3}$/TiN Gate Stack in High-Mobility Si/SiGe/SOI Quantum-Well Transistors[J]. Chin. Phys. Lett., 2016, 33(05): 028501
[13] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 028501
[14] HU Sheng-Dong, JIN Jing-Jing, CHEN Yin-Hui, JIANG Yu-Yu, CHENG Kun, ZHOU Jian-Lin, LIU Jiang-Tao, HUANG Rui, YAO Sheng-Jie. A Novel Interface-Gate Structure for SOI Power MOSFET to Reduce Specific On-Resistance[J]. Chin. Phys. Lett., 2015, 32(09): 028501
[15] LIU Li-Fang, PAN Li-Yang, ZHANG Zhi-Gang, XU Jun. Impact of Band-Engineering to Performance of High-k Multilayer Based Charge Trapping Memory[J]. Chin. Phys. Lett., 2015, 32(08): 028501
Viewed
Full text


Abstract