Chin. Phys. Lett.  2014, Vol. 31 Issue (2): 027701    DOI: 10.1088/0256-307X/31/2/027701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Controlling Factors of the Electric Field at the Triple Junction
LIU Yang1,2**, HUANG Xu-Dong1, FENG Yu-Jun1, HE Hong-Liang2
1Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049
2National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900
Cite this article:   
LIU Yang, HUANG Xu-Dong, FENG Yu-Jun et al  2014 Chin. Phys. Lett. 31 027701
Download: PDF(670KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The metal-dielectric-vacuum junction is defined as the triple junction owned enhanced electric field, thus this special region is regarded as the location where primary electrons emission is favored. For electron emission, triple junction could affect both the flashover breakdown of insulators and the electron emission property of ferroelectric cathodes. In this study, we theoretically investigate the electric field enhancement in the triple-junction region. It is found that the key parameter to determine the field enhancement is the taper angle of the electrode and the relative permittivity of the dielectric. In addition, we first deduce the accurate expression of the electric field in this special region. The controlling parameters for determining the field enhancement are discussed in detail. We also discover the way to reduce the electric field of this region through simulation. The current analysis would be useful for both the electron emission enhancement and the issue of flashover breakdown.
Received: 13 June 2013      Published: 28 February 2014
PACS:  77.65.-j (Piezoelectricity and electromechanical effects)  
  73.40.Sx (Metal-semiconductor-metal structures)  
  79.70.+q (Field emission, ionization, evaporation, and desorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/2/027701       OR      https://cpl.iphy.ac.cn/Y2014/V31/I2/027701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yang
HUANG Xu-Dong
FENG Yu-Jun
HE Hong-Liang
[1] Miller H C 1989 Electr. Insulation IEEE Trans. 24 765
[2] Puchkarev V F and Mesyats G A 1995 J. Appl. Phys. 78 5633
[3] Barker R J and Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York: IEEE)
[4] Jordan N M, Lau Y Y, French D M, Gilgenbach R M and Pengvanich P 2007 J. Appl. Phys. 102 033301
[5] Rosenman G, Shur D, Krasik Y E and Dunaevsky A 2000 J. Appl. Phys. 88 6109
[6] Watson A 1967 J. Appl. Phys. 38 2019
[7] Latham R V 1982 Vacuum 32 137
[8] Anderson R A and Brainard J P 1980 J. Appl. Phys. 51 1414
[9] Cuneo M E 1999 Dielectrics Electr. Insulation IEEE Trans. 6 469
[10] Hachenberg O and Brauer W 1959 Adv. Elect. Elect. Phys. 11 413
[11] Luginsland J W, Lau Y Y, Umstattd R J and Watrous J J 2002 Phys. Plasmas. 9 2371
[12] Geis M W, Efremow N N, Jr., Krohn K E, Twichell J C, Lyszczarz T M, Kalish R, Greer J A and Tabat M D 1997 Lincoln Lab. J. 10 3
[13] Schachter L 1998 Appl. Phys. Lett. 72 421
[14] Chung M S, Choi T S and Yoon B G 2005 Appl. Surf. Sci. 251 177
[15] Lewis T J 1955 J. Appl. Phys. 26 1405
[16] Ansys Corporation, http://www.ansys.com
[17] Shur D and Rosenman G 1999 J. Phys. D 32 L29
[18] Shur D, Rosenman G, Krasik Y E and Kugel V D 1996 J. Appl. Phys. 79 3669
[19] De Tourreil C H and Srivastava K D 1973 IEEE Trans. Electron. Insulation 1 17
Related articles from Frontiers Journals
[1] Chen-Fei Jin, Si-Qi Zhang, Zhi-Qiang Shen, Wei-Li Li. Roles of Nano-Domain Switching and Non-180$^{\circ}$ Domains in Enhancing Local Piezoelectric Responses of Highly (100)-Oriented Pb(Zr$_{0.60}$Ti$_{0.40}$)O$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2019, 36(10): 027701
[2] Qiang-zhong Wang, Gang Wang, Fa-xin Li. Precise, Long-Time Displacement Self-Sensing of Piezoelectric Cantilever Actuators Based on Charge Measurement Using the Sawyer–Tower Circuit[J]. Chin. Phys. Lett., 2018, 35(10): 027701
[3] Zheng-Hua Tang, Zheng-Sheng Jiang, Chun-Zhi Jiang, Da-Jun Lei, Jian-Quan Huang, Feng Qiu, Hai-Ming Deng, Min Yao, Xiao-Yi Huang. Field Tunable Polaritonic Band Gaps in Fibonacci Piezoelectric Superlattices[J]. Chin. Phys. Lett., 2018, 35(7): 027701
[4] Ze-Qun Fang, Zhi-Lin Hou. Tunable Band Gap in Piezoelectric Composite Rod Based on the Inter-Coupling Effect[J]. Chin. Phys. Lett., 2018, 35(5): 027701
[5] Hao He, Jiang-Tao Zhao, Zhen-Lin Luo, Yuan-Jun Yang, Han Xu, Bin Hong, Liang-Xin Wang, Rui-Xue Wang, Chen Gao. The Electric-Field Controllable Non-Volatile 35$^{\circ}$ Rotation of Magnetic Easy Axis in Magnetoelectric CoFeB/(001)-Cut Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-25%PbTiO$_{3}$ Heterostructure[J]. Chin. Phys. Lett., 2016, 33(06): 027701
[6] Zhen-Ye Zhu, Si-Qi Wang, Yan-Ming Fu. First-Principles Study of Properties of Strained PbTiO$_{3}$/KTaO$_{3}$ Superlattice[J]. Chin. Phys. Lett., 2016, 33(02): 027701
[7] WANG Yin, ZHOU Jin-Xiong, WU Xiao-Hong, LI Bo, ZHANG Ling. Energy Diagrams of Dielectric Elastomer Generators under Different Types of Deformation[J]. Chin. Phys. Lett., 2013, 30(6): 027701
[8] XU Yan-Long, CHEN Chang-Qing, TIAN Xiao-Geng. The Existence of Simultaneous Bragg and Locally Resonant Band Gaps in Composite Phononic Crystal[J]. Chin. Phys. Lett., 2013, 30(4): 027701
[9] WANG Xian-Ying, XIE Shu-Fan, CHEN Xiao-Dong, LIU Yang-Yang. Direct Piezoelectric Potential Measurement of ZnO Nanowires Using a Kelvin Probe Force Microscope[J]. Chin. Phys. Lett., 2013, 30(4): 027701
[10] WU Shao-Hua, ZHAO Zhan, ZHAO Jun-Juan, GUO Li-Jun, DU Li-Dong, FANG Zhen, KONG De-Yi, XIAO Li, GAO Zhong-Hua. Ultrasonic Energy Transference Based on an MEMS ZnO Film Array[J]. Chin. Phys. Lett., 2012, 29(12): 027701
[11] TANG Zheng-Hua, ZHANG Wei-Yi. A Field Tunable Multichannel Microwave Delay-Line Using a Piezoelectric-Piezomagnetic Superlattice[J]. Chin. Phys. Lett., 2012, 29(11): 027701
[12] LI Xiu-Ming, ZHANG Rui, HUANG Nai-Xing, LÜ, Tian-Quan, CAO Wen-Wu. Surface Acoustic Wave Propagation in Relaxor-Based Ferroelectric Single Crystals 0.93Pb(Zn1/3Nb2/3)O3−0.07PbTiO3 Poled along [011]c[J]. Chin. Phys. Lett., 2012, 29(2): 027701
[13] ZHOU Yun**, CHEN Miao-Gen, FENG Zhen-Jie, WANG Xin-Yan, CUI Yu-Jian, ZHANG Jin-Cang . High Magnetoelectric Coupling in Nano–Microscale Particulate Composites at Low Frequency[J]. Chin. Phys. Lett., 2011, 28(10): 027701
[14] DUAN Yi-Feng**, QIN Li-Xia, SHI Li-Wei, TANG Gang . Pressure-Induced Anomalous Phase Transitions and Colossal Enhancements of Piezoelectricity in Ground-State BaTiO3[J]. Chin. Phys. Lett., 2011, 28(4): 027701
[15] NI Heng-Kan, ZOU Qiang**, FU Xing, WU Sen, WANG Hui, XUE Tao . Production of ZnO Nanobelts and Meso-Scale Study of Mechanical Properties[J]. Chin. Phys. Lett., 2010, 27(11): 027701
Viewed
Full text


Abstract