Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 127701    DOI: 10.1088/0256-307X/31/12/127701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electron Trap Energy Distribution in HfO2 by the Discharge-Based Pulse IV Technique
ZHENG Xue-Feng1,2**, FAN Shuang1,2, KANG Di1,2, ZHANG Jian-Kun1,2, CAO Yan-Rong2, MA Xiao-Hua2, HAO Yue1,2
1School of Microelectronics, Xidian University, Xi'an 710071
2Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, Xidian University, Xi'an 710071
Cite this article:   
ZHENG Xue-Feng, FAN Shuang, KANG Di et al  2014 Chin. Phys. Lett. 31 127701
Download: PDF(516KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electron traps in HfO2 are a major concern of the reliability of metal-oxide-semiconductor field effect transistors (MOSFETs) beyond the 30 nm technology generation. In this work, the principle of the discharge-based pulse IV technique is demonstrated in detail. By using this technique, the thorough energy distribution of electron traps across the 4 nm HfO2 layer is identified, which overcomes the shortcomings of the current techniques. It is observed that there are two peaks in HfO2. The large peak is at around 1.0 eV below the HfO2 conduction band bottom. The small peak is at about 1.43 eV below the HfO2 conduction band bottom. The results provide valuable information for theoretical modeling establishment, fast material assessment and process optimization for MOSFETs with high-k gate dielectrics.
Published: 12 January 2015
PACS:  77.55.D-  
  73.43.Fj (Novel experimental methods; measurements)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/127701       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/127701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Xue-Feng
FAN Shuang
KANG Di
ZHANG Jian-Kun
CAO Yan-Rong
MA Xiao-Hua
HAO Yue
[1] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
[2] Kim K 2010 Tech. Dig. Int. Electron. Devices Meet. (San Francisco USA 6–8 December 2010) p 1.1.1
[3] Kim K 2005 Tech. Dig. Int. Electron. Devices Meet. (Washington DC, USA 5–7 December 2005) p 333
[4] Fan J B, Liu H X, Gao B, Ma F, Zhuo Q Q and Hao Y 2012 Chin. Phys. B 21 087702
[5] Tan T T, Liu Z T and Li Y Y 2011 Chin. Phys. Lett. 28 086803
[6] Cartier E, Linder B P, Narayanan V And Paruchuri V K 2006 Tech. Dig. Int. Electron. Devices Meet. (San Francisco, USA 11–13 December 2006) p 4
[7] Zahid M B, Degraeve R, Pantisano L, Zhang J F and Groeseneken G 2007 IEEE 45th Annual International Reliability Physics Symposium (Phoenix, USA 15–19 April 2007) p 55
[8] Crupi I, Degraeve R, Govoreanu B, Brunco D P, Roussel P J and Van H J 2006 IEEE Trans. Device Mater. Reliab. 6 509
[9] Wang Y, Lee V and Cheung K P 2006 Tech. Dig. Int. Electron. Devices Meet. (San Francisco USA 11–13 December 2006) p 491
[10] Degraeve R, Cho M, Govoreanu B, Kaczer B, Zahid M B, Van H J, Jurczak M and Groeseneken G 2008 Tech. Dig. Int. Electron. Devices Meet. (San Francisco USA 15–17 December 2008) p 775
[11] Zhao C Z, Zahid M B, Zhang J F, Groeseneken G, Degraeve R and De G S 2005 Microelectron. Eng. 80 366
[12] Zheng X F, Zhang W D, Govoreanu B, Aguado D R, Zhang J F and Van H J 2010 IEEE Trans. Electron Devices 57 288
[13] Zheng X F, Zhang W D, Govoreanu B, Zhang J F and Van H J 2010 IEEE Trans. Electron Devices 57 2484
[14] Maes H E, Groeseneken G, Degraeve R, De Blauwe J and van den Bosch G 1998 Microelectron. Eng. 40 147
[15] Tse K, Liu D, Xiong K and Robertson J 2007 Microelectron. Eng. 84 2028
[16] Xiong K, Robertson J, Gibson M C and Clark S J 2005 Appl. Phys. Lett. 87 183505
Related articles from Frontiers Journals
[1] Zhao-Zhao Hou, Gui-Lei Wang, Jin-Juan Xiang, Jia-Xin Yao, Zhen-Hua Wu, Qing-Zhu Zhang, Hua-Xiang Yin. Improved Operation Characteristics for Nonvolatile Charge-Trapping Memory Capacitors with High-$\kappa$ Dielectrics and SiGe Epitaxial Substrates[J]. Chin. Phys. Lett., 2017, 34(9): 127701
[2] Sheng-Kai Wang, Lei Ma, Hu-Dong Chang, Bing Sun, Yu-Yu Su, Le Zhong, Hai-Ou Li, Zhi Jin, Xin-Yu Liu, Hong-Gang Liu. Positive Bias Temperature Instability Degradation of Buried InGaAs Channel nMOSFETs with InGaP Barrier Layer and Al$_{2}$O$_{3}$ Dielectric[J]. Chin. Phys. Lett., 2017, 34(5): 127701
[3] KONG Xiang-Ting, ZHOU Xu-Liang, LI Shi-Yan, QIAO Li-Jun, LIU Hong-Gang, WANG Wei, PAN Jiao-Qing. High-Performance In0.23Ga0.77As Channel MOSFETs with High Current Ratio Ion/Ioff Grown on Semi-insulating GaAs Substrates by MOCVD[J]. Chin. Phys. Lett., 2015, 32(03): 127701
[4] MENG Yong-Qiang, LIU Zheng-Tang, FENG Li-Ping, CHEN Shuai. Influence of Rapid Thermal Annealing on the Structure and Electrical Properties of Ce-Doped HfO2 Gate Dielectric[J]. Chin. Phys. Lett., 2014, 31(07): 127701
[5] ZHANG Dong, HUO Zong-Liang, JIN Lei, HAN Yu-Long, CHU Yu-Qiong, CHEN Guo-Xing, LIU Ming, YANG Bao-He. Charge Loss Characteristics of Different Al Contents in a HfAlO Trapping Layer Investigated by Variable Temperature Kelvin Probe Force Microscopy[J]. Chin. Phys. Lett., 2014, 31(06): 127701
[6] TIAN Ben-Lang, CHEN Chao, ZHANG Ji-Hua, ZHANG Wan-Li, LIU Xing-Zhao. AlGaN/GaN MISHEMTs with Sodium-Beta-Alumina as the Gate Dielectrics[J]. Chin. Phys. Lett., 2013, 30(2): 127701
[7] MA Peng,JIN Zhi**,GUO Jian-Nan,PAN Hong-Liang,LIU Xin-Yu,YE Tian-Chun,WANG Hong,WANG Guan-Zhong. Chemical Vapour Deposition Graphene Radio-Frequency Field-Effect Transistors[J]. Chin. Phys. Lett., 2012, 29(5): 127701
[8] GAO Hai-Xia**, HU Rong, YANG Yin-Tang. The Theoretical Investigation and Analysis of High-Performance ZnO Double-Gate Double-Layer Insulator Thin-Film Transistors[J]. Chin. Phys. Lett., 2012, 29(1): 127701
[9] TAN Ting-Ting**, LIU Zheng-Tang, LI Yan-Yan . Electrical, Structural and Interfacial Characterization of HfO2 Films on Si Substrates[J]. Chin. Phys. Lett., 2011, 28(8): 127701
Viewed
Full text


Abstract