Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 127302    DOI: 10.1088/0256-307X/31/12/127302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Transport of the Adsorbed Trigonal Graphene Flake: A First Principles Calculation
TAN Xun-Qiong**
School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114
Cite this article:   
TAN Xun-Qiong 2014 Chin. Phys. Lett. 31 127302
Download: PDF(574KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the non-equilibrium Green's function method combined with the density functional theory, we investigate the transport properties of a zigzag trigonal graphene flake (zTGF) adsorbed by a single atom (F or H) or a single group (OH or CH3) at the central site and connected to two symmetric Au electrodes by Au–S bonds. The results show that the OH adsorption can enhance the conductance, followed by the negative differential resistance effects, while the conductance for the zTGF adsorbed by H and CH3 is lowered obviously, and rectifying characteristics can be observed for the H-adsorbed system. The adsorbing action alters the molecular level position and the spatial distribution of the molecular orbital, leading to different transport properties.
Published: 12 January 2015
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  85.65.+h (Molecular electronic devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/127302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/127302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAN Xun-Qiong
[1] Tans S J, Verschueren A R M and Dekker C 1998 Nature 393 49
[2] Smit R H M, Noat Y, Untiedt C, Lang N D, Hemert M C and Ruitenbeek J M 2002 Nature 419 906
[3] Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550
[4] Zheng J M, Guo P, Ren Z, Jiang Z, Bai J and Zhang Z 2012 Appl. Phys. Lett. 101 083101
[5] Fan Z Q, Zhang Z H, Qiu M, Deng X Q and Tang G P 2012 Chin. Phys. Lett. 29 077305
[6] Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q and Fan Z Q 2013 Adv. Funct. Mater. 23 2765
[7] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[8] Deng X Q, Zhang Z H, Tang G P, Fan Z Q and Qiu M 2012 Appl. Phys. Lett. 100 063107
[9] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008 Science 320 356
[10] Wang X R, Ouyang Y J, Li X L, Wang H L, Guo J and Dai H J 2008 Phys. Rev. Lett. 100 206803
[11] Elias D C,. Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
[12] Leenaerts O, Sahin H, Partoens B and Peeters F M 2013 Phys. Rev. B 88 035434
[13] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
[14] Withers F, Dubois M and Savchenko A K 2010 Phys. Rev. B 82 073403
[15] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T and Ruoff R S 2007 Nature 448 457
[16] Wang W L, Meng S and Kaxiras E 2008 Nano Lett. 8 241
[17] Yazyev O V, Wang W L, Meng S and Kaxiras E 2008 Nano Lett. 8 766
[18] Zhang Z H, Zhang J J, Kwong G, Li, Fan Z Q, Deng X Q and Tang G P 2013 Sci. Rep. 3 2575
[19] Rossier J F and Palacios J J 2007 Phys. Rev. Lett. 99 177204
[20] Sheng W, Ning Z Y, Yang Z Q and Guo H 2010 Nanotechnology 21 385201
[21] Ezawa M 2006 Phys. Rev. B 73 045432
[22] Singh A K and Penev E S and Yakobson B I 2010 ACS Nano 4 3510
[23] Hod O, Barone V and Cuseria S G E 2008 Phys. Rev. B 77 035411
[24] Zhang Z H, Yang Z, Yuan J H, Zhang H, Deng X Q and Qiu M 2008 J. Chem. Phys. 129 094702
[25] Buttiker M and Landauer R 1985 Phys. Rev. B 31 6207
[26] Deng X Q, Yang C H and Zhang H L 2013 Acta Phys. Sin. 62 186102 (in Chinese)
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 127302
[2] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 127302
[3] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 127302
[4] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 127302
[5] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 127302
[6] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 127302
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 127302
[8] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 127302
[9] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 127302
[10] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 127302
[11] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 127302
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 127302
[13] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 127302
[14] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 127302
[15] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 127302
Viewed
Full text


Abstract