Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 120602    DOI: 10.1088/0256-307X/31/12/120602
GENERAL |
Cs 728 nm Laser Spectroscopy and Faraday Atomic Filter
LIU Zhong-Zheng1, TAO Zhi-Ming1,2, JIANG Zhao-Jie1, CHEN Jing-Biao1**
1State Key Laboratory of Advanced Optical Communication System and Network, Institute of Quantum Electronics, School of Electronics Engineering & Computer Science, Peking University, Beijing 100871
2College of Science, Guizhou University of Engineering Science, Bijie 551700
Cite this article:   
LIU Zhong-Zheng, TAO Zhi-Ming, JIANG Zhao-Jie et al  2014 Chin. Phys. Lett. 31 120602
Download: PDF(613KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We mainly present the 728 nm laser spectroscopy and Faraday atomic filter of Cs atoms with 650 MHz linewidth and 2.6% transmission based on an electrodeless discharge vapor lamp, compared with Rb 728 nm laser spectroscopy. Accidentally, this remarkably strong Cs 728 nm transition from the 6F7/2 state to the 5D5/2 state is only about 2.5 GHz away from the Rb 728 nm transition of the future potential four-level active optical clock, once laser cooled and trapped from the 7S1/2 state to the 5P1/2 state, as we proposed previously. A Faraday atomic filter stabilized 728 nm laser using a Cs electrodeless discharge vapor lamp with a power of 10 mW will provide a frequency reference to evaluate the performance of the potential Rb four-level active optical clock at 728 nm with power less than 1 nW by 2.5 GHz heterodyne measurements.
Published: 12 January 2015
PACS:  06.30.Ft (Time and frequency)  
  32.30.-r (Atomic spectra?)  
  42.62.-b (Laser applications)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/120602       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/120602
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Zhong-Zheng
TAO Zhi-Ming
JIANG Zhao-Jie
CHEN Jing-Biao
[1] Ohman Y 1956 Stockholms Obs. Ann. 19 3
[2] Zentile M, Andrews R, Weller L, Knappe S, Adams C and Hughes I 2014 J. Phys. B 47 075005
[3] Zhuang W, Hong Y, Gao Z, Zhu C and Chen J 2014 Chin. Opt. Lett. 12 101204
[4] Chen J 2009 Chin. Sci. Bull. 54 348
[5] Chen J 2005 arXiv:physics/0512096 [physics.atom-ph]
[6] Chen J and Chen X 2005 Proc. 2005 IEEE International Frequency Control Symposium and Exposition p 608
[7] Zhuang W, Zhang T and Chen J 2014 Chin. Phys. Lett. 31 093201
[8] Kitching J, Knappe S and Hollberg L 2002 Appl. Phys. Lett. 81 553
[9] Todorov P, Slavov D, Vaseva K, Taslakov M, Cartaleva S and Saltiel S 2012 Phys. Scr. T149 014014
[10] Yin B and Shay T M 1992 IEEE Photon. Technol. Lett. 4 488
[11] Menders J, Benson K, Bloom S H, Liu C S and Korevaar E 1991 Opt. Lett. 16 846
[12] Zheng Y J, Niigaki M, Miyajima H, Hiruma T and Kan H 2009 Appl. Phys. Express 2 032501
[13] Wang Y, Dai C, Wu Z and Li X 2013 Int. Conf. Opt. Instrum. Technol.: Optoelectronic Meas. Technol. Syst. 90460J (Beijing, China 19 December 2013) p 90460J
[14] Xu Z, Pan D, Zhuang W and Chen J 2014 arXiv:1407.1505v1 [physics.atom-ph]
[15] Wang Y 2009 Chin. Sci. Bull. 54 347
[16] Chen J 2008 Proceedings of 7th Frequency Standards and Metrology Symposium p 525
[17] Zhuang W, Yu D and Chen J 2006 Proceedings of International Frequency Control Symposium p 277
[18] Zhuang W, Yu D, Chen Z, Huang K, Chen J 2007 Proceedings of European Frequency and Time Forum and International Frequency Control Symposium p 96
[19] Yu D and Chen J 2008 Phys. Rev. A 78 013846
[20] Meiser D, Ye J, Carlson D and Holland M 2009 Phys. Rev. Lett. 102 163601
[21] Meiser D and Holland M 2010 Phys. Rev. A 81 033847
[22] Yu D S and Chen J B 2014 Phys. Rev. A 81 053809
[23] Xie X, Zhuang W and Chen J 2010 Chin. Phys. Lett. 27 074202
[24] Zhuang W and Chen J 2011 Chin. Phys. Lett. 28 080601
[25] Kazakov G and Schumm T 2013 Phys. Rev. A 87 013821
[26] Xu Z, Zhuang W and Chen J 2014 arXiv:1404.6021 [physics.atom-ph]
[27] Zang X, Zhang T and Chen J 2012 Chin. Phys. Lett. 29 090601
[28] Wang Y F, Wang D Y, Zhang T G, Hong Y L, Zhang S N, Tao Z M, Xie X P and Chen J B 2013 Sci. Chin. Phys. Mech. Astron. 56 1107
[29] Wang Y, Xue X, Wang D, Zhang T, Hong Y, Zhuang W and Chen J 2012 Proceedings of International Frequency Control Symposium (IEEE Baltimore BC) p 1
[30] Zhang S, Wang Y, Zhang T, Zhuang W and Chen J 2013 Chin. Phys. Lett. 30 040601
[31] Xu Z C, Zhuang W, Wang Y F, Wang D, Zhang X, Xue X, Pan D and Chen J 2013 European Frequency and Time Forum and International Frequency Control Symposium p 395
[32] Zhang T, Wang Y, Zang X, Zhuang W and Chen J 2013 Chin. Sci. Bull. 58 2033
[33] Liu Z, Xue X, Niu F, Zhang L, Lin L and Chen J 2014 Chin. Phys. Lett. 31 120601
[34] Zhang Y, Jia X and Ma Z 2001 IEEE J. Quantum Electron. 37 372
[35] Liu S, Zhang Y, Wu H and Fan D 2011 Opt. Commun. 284 4180
[36] Dick D and Shay T 1991 Opt. Lett. 16 867
[37] Tang J, Wang Q, Li Y, Zhang L, Gan Z, Duan M, Kong J and Zheng L 1995 Appl. Opt. 34 2619
[38] Popescu A and Walther T 2010 Appl. Phys. B 98 667
[39] Menders J, Searcy P, Roff K and Korevaar E 1992 Opt. Lett. 17 1388
[40] Sorokin P, Lankard J, Moruzzi V and Lurio A 1969 Appl. Phys. Lett. 15 179
[41] Miao X, Yin L, Zhuang W, Luo B, Dang A, Chen J and Guo H 2011 Rev. Sci. Instrum. 82 086106
[42] Zhang X, Tao Z, Zhu C, Hong Y, Zhuang W and Chen J 2013 Opt. Express 21 28010
[43] Zhuang W and Chen J 2014 Opt. Lett. 39 6339
[44] Sun Q, Zhuang W, Liu Z and Chen J 2011 Opt. Lett. 36 4611
[45] Sun Q, Hong Y, Zhuang W, Liu Z and Chen J 2012 Appl. Phys. Lett. 101 211102
[46] Sun Q, Hong Y, Xue X, Tao Z, Zhuang W, Chen J and Liu Z 2012 Frequency Control Symposium p 1
[47] http://steck.us/alkalidata/
[48] Svanberg S, Tsekeris P and Happer W 1973 Phys. Rev. Lett. 30 817
[49] Camparo J and Mackay R 2007 J. Appl. Phys. 101 053303
[50] Lee W, Heuring J, Campbell J, Buell W and Davis C 1993 Appl. Phys. Lett. 63 1026
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 120602
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 120602
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 120602
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 120602
[5] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 120602
[6] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 120602
[7] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 120602
[8] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 120602
[9] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 120602
[10] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 120602
[11] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 120602
[12] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 120602
[13] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 120602
[14] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 120602
[15] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 120602
Viewed
Full text


Abstract