Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 116201    DOI: 10.1088/0256-307X/31/11/116201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Elastic and Dynamical Properties of YB4: First-Principles Study
FU Yuan-Yuan, LI Yin-Wei, HUANG Hong-Mei**
School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116
Cite this article:   
FU Yuan-Yuan, LI Yin-Wei, HUANG Hong-Mei 2014 Chin. Phys. Lett. 31 116201
Download: PDF(677KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the elastic and dynamical properties of YB4 from first-principles calculations. It is found that the optimized lattice constants and bulk modulus (182 GPa) agree well with the experimental data. The structural stability of tetragonal YB4 is confirmed by the calculated elastic constants and phonon spectra. YB4 holds a Debye temperature of 874 K and has small elastic anisotropy. The estimated hardness of YB4 is about 17 GPa, indicating that YB4 is a hard solid while not a superhard one.
Published: 28 November 2014
PACS:  62.20.-x (Mechanical properties of solids)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/116201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/116201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FU Yuan-Yuan
LI Yin-Wei
HUANG Hong-Mei
[1] Wa?kowska A, Gerward L, Olsen J S et al 2011 Acta Mater. 59 4886
[2] Li Y L, Zhong G H and Zeng Z 2009 Chin. Phys. B 18 4437
[3] Chung H Y, Weinberger M B, Levine J B et al 2007 Science 316 436
[4] Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
[5] Li Y L, Zeng Z and Lin H Q 2010 Chem. Phys. Lett. 492 246
[6] Mohammadi R, Lech A T, Xie M et al 2011 Proc. Natl. Acad. Sci. U.S.A. 108 10958
[7] Li Y L and Zeng Z 2009 Chem. Phys. Lett. 474 93
[8] Li Y L and Zeng Z 2008 Chin. Phys. Lett. 25 4086
[9] Otani S, Korsukova M M, Mitsuhashi T and Kieda N 2000 J. Cryst. Growth 217 378
[10] Günster J, Tanaka T and Souda R 1997 Phys. Rev. B 56 15962
[11] J?ger B, Paluch S, Wolf W et al 2004 J. Alloys Compd. 383 232
[12] Gao F M 2006 Phys. Rev. B 73 132104
[13] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[14] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[15] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[16] Hill R 1952 Proc. Phys. Soc. A 65 349
[17] Ravindran P, Fast L, Korzhavyi P A et al 1998 J. Appl. Phys. 84 4891
[18] Li Y L and Zeng Z 2008 Int. J. Mod. Phys. C 19 1269
[19] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[20] Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
Related articles from Frontiers Journals
[1] Chang Liu, Xianqi Song, Quan Li, Yanming Ma, and Changfeng Chen. Superconductivity in Shear Strained Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 116201
[2] Zhongmin Ren, Muqin Wang, Shuaishuai Chen, Lei Ding, Hua Li, Jian Liu, Jieyun Zheng, Zhihong Liu, Deyu Wang, and Mingkui Wang. Improvement of Cyclic Stability of Na$_{0.67}$Mn$_{0.8}$Ni$_{0.1}$Co$_{0.1}$O$_{2}$ via Suppressing Lattice Variation[J]. Chin. Phys. Lett., 2021, 38(7): 116201
[3] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 116201
[4] Xue-Hua Zhang, Rong Li, Yong-Qing Zhao, and Wei-Dong Zeng. Shear-Banding Evolution Dynamics during High Temperature Compression of Martensitic Ti-6Al-4V Alloy[J]. Chin. Phys. Lett., 2020, 37(11): 116201
[5] Lei Guo, Gang Tang, Jiawang Hong. Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(5): 116201
[6] Nian-Rui Qu, Hong-chao Wang, Qing Li, Zhi-Ping Li, Fa-Ming Gao. An Orthorhombic Phase of Superhard $o$-BC$_{4}$N[J]. Chin. Phys. Lett., 2019, 36(3): 116201
[7] Zhi-Dong Han, Heng-Wei Luan, Shao-Fan Zhao, Na Chen, Rui-Xuan Peng, Yang Shao, Ke-Fu Yao. Microstructures and Mechanical Properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ High Entropy Alloys[J]. Chin. Phys. Lett., 2018, 35(3): 116201
[8] Yi Tian, Hong Wang, Chang-Sheng Zhang, Qiang Tian, Wei-Bin Zhang, Hong-Jia Li, Jian Li, Ben-De Liu, Guang-Ai Sun, Tai-Ping Peng, Yao Xu, Jian Gong. Compressive Behavior of TATB Grains inside TATB-Based PBX Revealed by In-Situ Neutron Diffraction[J]. Chin. Phys. Lett., 2017, 34(6): 116201
[9] Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai. Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs[J]. Chin. Phys. Lett., 2016, 33(10): 116201
[10] Chun-Lei Fan, Bo-Han Ma, Da-Nian Chen, Huan-Ran Wang, Dong-Fang Ma. Spall Strength of Resistance Spot Weld for QP Steel[J]. Chin. Phys. Lett., 2016, 33(03): 116201
[11] GUO Wen-Feng, WANG Ling-Sheng, LI Zhi-Ping, XIA Mei-Rong, GAO Fa-Ming. Urtra-Hard Bonds in P-Carbon Stronger than Diamond[J]. Chin. Phys. Lett., 2015, 32(09): 116201
[12] ZHUO Long-Chao, LIANG Shu-Hua, ZHANG Tao. The 1.85 GPa AlSc Bulk Alloy with Abundant Nanoscale Growth Twins[J]. Chin. Phys. Lett., 2015, 32(07): 116201
[13] LIU Jian-Sheng, WANG Li-Jun, HE Shi-Tang. On the Fundamental Mode Love Wave in Devices Incorporating Thick Viscoelastic Layers[J]. Chin. Phys. Lett., 2015, 32(06): 116201
[14] MAO Xu, LV Xing-Dong, WEI Wei-Wei, ZHANG Zhe, YANG Jin-Ling, QI Zhi-Mei, YANG Fu-Hua. A Wafer-Level Sn-Rich Au–Sn Bonding Technique and Its Application in Surface Plasmon Resonance Sensors[J]. Chin. Phys. Lett., 2014, 31(05): 116201
[15] SUN Qi-Cheng, ZHANG Guo-Hua, JIN Feng. The Stress Distribution in Polydisperse Granular Packings in Two Dimensions[J]. Chin. Phys. Lett., 2013, 30(2): 116201
Viewed
Full text


Abstract