Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 014701    DOI: 10.1088/0256-307X/31/1/014701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Numerical Simulation of Droplets Impacting on a Liquid Film with a Vapor Bubble Growing
HOU Yan1,2, TAO Yu-Jia1, HUAI Xiu-Lan1**
1Institute of Engineering Thermophysics, University of Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
HOU Yan, TAO Yu-Jia, HUAI Xiu-Lan 2014 Chin. Phys. Lett. 31 014701
Download: PDF(1141KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A numerical model of multiphase flow is developed to investigate the relative contributions of droplet parameters to spray cooling heat transfer. The 2-D model takes into account the effects of surface tension, gravity and viscosity. The heat and mass exchanges of free surface are defined to study vapor bubble behavior in liquid films. The multiphase flow and heat transfer are discussed for the three droplet parameters: initial droplet position, initial droplet temperature, and droplet impact frequency. The heat transfer mechanisms of the three cases are discussed in detail.
Received: 25 September 2013      Published: 28 January 2014
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  44.35.+c (Heat flow in multiphase systems)  
  47.55.D- (Drops and bubbles)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/014701       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/014701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HOU Yan
TAO Yu-Jia
HUAI Xiu-Lan
[1] Horacek B, Kiger K T and Kim J 2005 Int. J. Heat Mass Transfer 48 1425
[2] Yang J, Chow L C and Pais M R 1996 J. Heat Transfer 118 668
[3] Martinez-Galvan E et al 2011 J. Electron. Packaging 133 011002
[4] Pautsch A G and Shedd T A 2006 Int. J. Heat Mass Transfer 49 2610
[5] An Z C et al 2004 J. Eng. ThermoPhys. 25 121
[6] Rini D P, Chen R H and Chow L C 2002 J. Heat Transfer 124 63
[7] Silk E A, Golliher E L and Selvam R P 2008 Energy Convers. Manage. 49 453
[8] Lv X, Zou Q P and Reeve D 2011 Adv. Water Resources 34 1320
[9] Selvam R P, Lin L C and Ponnappan R 2005 Space Technol. Appl. Int. Forum-Staif 746 55
[10] Selvam R Pand Ponnappan R 2004 15th Annual Thermal & Fluids Analysis Workshop (Pasadena, CA, 30 Augutst–3 September 2004)
[11] Selvam R P, Lin L C and Ponnappan R 2006 Int. J. Heat Mass Transfer 49 4265
[12] Sarkar S and Selvam R P 2009 J. Heat Transfer 131 121007
[13] Trujillo M F et al 2011 J. Heat Transfer 133 122201
[14] Vander Wal R L, Berger G M and Mozes S D 2006 Exp. Fluids 40 33
Related articles from Frontiers Journals
[1] Tao HU, Meng-Dan HU, Si-si Zhou, Dong-Ke SUN. An Immersed Boundary-Lattice Boltzmann Prediction for Particle Hydrodynamic Focusing in Annular Microchannels[J]. Chin. Phys. Lett., 2018, 35(10): 014701
[2] SUN Dong-Ke, ZHANG Qing-Yu, CAO Wei-Sheng, ZHU Ming-Fang. Simulation of Dendritic Growth with Melt Convection in Solidification of Ternary Alloys[J]. Chin. Phys. Lett., 2015, 32(06): 014701
[3] WANG Zheng-Dao, YANG Jian-Fei, WEI Yi-Kun, QIAN Yue-Hong. A New Extrapolation Treatment for Boundary Conditions in Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2013, 30(9): 014701
[4] SUN Dong-Ke, JIANG Di, XIANG Nan, CHEN Ke, NI Zhong-Hua. An Immersed Boundary-Lattice Boltzmann Simulation of Particle Hydrodynamic Focusing in a Straight Microchannel[J]. Chin. Phys. Lett., 2013, 30(7): 014701
[5] WEN Bing-Hai, CHEN Yan-Yan, ZHANG Ren-Liang, ZHANG Chao-Ying, FANG Hai-Ping . Lateral Migration and Nonuniform Rotation of Biconcave Particle Suspended in Poiseuille Flow[J]. Chin. Phys. Lett., 2013, 30(6): 014701
[6] GAO Hao-Tian, QIN Feng-Hua, HUANG Wei-Xi, SUN De-Jun. Multiple Modes of Filament Flapping in a Uniform Flow[J]. Chin. Phys. Lett., 2012, 29(9): 014701
[7] ZHOU Yu-Fen, FENG Xue-Shang. A New Hybrid Numerical Scheme for Two-Dimensional Ideal MHD Equations[J]. Chin. Phys. Lett., 2012, 29(9): 014701
[8] NIE De-Ming, LIN Jian-Zhong, and ZHANG Kai. Flow Patterns in the Sedimentation of a Capsule-Shaped Particle[J]. Chin. Phys. Lett., 2012, 29(8): 014701
[9] WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 014701
[10] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 014701
[11] XIA Yong, LU De-Tang, LIU Yang, XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder[J]. Chin. Phys. Lett., 2009, 26(3): 014701
[12] LI Hua-Bing, JIN Li, QIU Bing. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice[J]. Chin. Phys. Lett., 2008, 25(11): 014701
[13] RAO Yong, NI Yu-Shan, LIU Chao-Feng. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(11): 014701
[14] Rafael Cortell. A Numerical Tackling on Sakiadis Flow with Thermal Radiation[J]. Chin. Phys. Lett., 2008, 25(4): 014701
[15] TAN Xin-Yu, ZHANG Duan-Ming, FENG Sheng-Qin, LI Zhi-Hua, LIU Gao-Bin, FANG Ran-Ran, SUN Min. A New Dynamics Expansion Mechanism for Plasma during Pulsed Laser Deposition[J]. Chin. Phys. Lett., 2008, 25(1): 014701
Viewed
Full text


Abstract