Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 014205    DOI: 10.1088/0256-307X/31/1/014205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Competition between Two Six-Wave Mixing Channels in Atomic Rb Vapor
ZHU Chang-Jun1**, TONG Na1, HE Jun-Fang2, ZHANG Guo-Qing1, ZHAI Xue-Jun1, XUE Bing1
1Department of Physics, School of Science, Xi'an Polytechnic University, Xi'an 710048
2School of Physics and Mechatronics, Xi'an University of Arts and Science, Xi'an 710065
Cite this article:   
ZHU Chang-Jun, TONG Na, HE Jun-Fang et al  2014 Chin. Phys. Lett. 31 014205
Download: PDF(477KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two six-wave mixing processes are achieved simultaneously in rubidium vapor and two channels are identified. Signal competition between the two channels is observed and phase matching conditions are analyzed for the two channels. The results show that the two six-wave mixing channels correspond to two parametric processes with weak coupling and, moreover, quantum interference and phase matching conditions primarily govern the signal competition.
Received: 10 September 2013      Published: 28 January 2014
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/014205       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/014205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Chang-Jun
TONG Na
HE Jun-Fang
ZHANG Guo-Qing
ZHAI Xue-Jun
XUE Bing
[1] Singh M, Aghamkar P and Sen P K 2007 Chin. Phys. Lett. 24 2245
[2] Zhou Y, Wang G L, Li C M et al 2008 Chin. Phys. Lett. 25 963
[3] Moore M A, Garrett W R and Payne M G 1989 Phys. Rev. A 39 3692
[4] Zhang P L, Wang Y C and Schawlow A L 1984 J. Opt. Soc. Am. B 1 9
[5] Jabbour Z J, Malcuit M S and Huennekens J 1991 Appl. Phys. B 52 281
[6] Chen F Z, Han X F and Wu C Y R 1993 Appl. Phys. B 56 113
[7] Wu Y and Yang X X 2004 Phys. Rev. A 70 053818
[8] Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
[9] Zhang Y P, Anderson B, Brown A W and Xiao M 2007 Appl. Phys. Lett. 91 061113
[10] Zhang Y P, Brown A W and Xiao M 2007 Phys. Rev. Lett. 99 123603
[11] Zhu C J, He J F, Xue B and Zhai X J 2007 Chin. Phys. Lett. 24 2234
[12] Zhu C J, He J F, Zhai X J and Xue B 2008 Chin. Phys. Lett. 25 3242
[13] Song Y, Hou S L, Li P Y, Sang S L, Wang Z G and Zhang Y P 2011 Chin. Phys. Lett. 28 024205
[14] Song Y, Dai G X, Fu Y X, Zhao J Y, Wang Z G and Zhang Y P 2011 Chin. Phys. B 20 074206
[15] Katharakis M, Merlemis N, Serafetinides A and Efthimiopoulos T 2002 J. Phys. B 35 4969
[16] Miles R and Harris S E 1973 IEEE J. Quantum Electron. 9 470
[17] Beuc R, Movre M, Horvatic V, Vadla C, Dulieu O and Aymar M 2007 Phys. Rev. A 75 032512
Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 014205
[2] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 014205
[3] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 014205
[4] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 014205
[5] Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces[J]. Chin. Phys. Lett., 2021, 38(7): 014205
[6] Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang, Xu Zhang, Jia-Jun Song, and Zhi-Yi Wei. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser[J]. Chin. Phys. Lett., 2021, 38(7): 014205
[7] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 014205
[8] Li-Jiao He, Ke Liu, Nan Zong, Zhao Liu, Zhi-Min Wang, Yong Bo, Xiao-Jun Wang, Qin-Jun Peng, Da-Fu Cui, Zu-Yan Xu. A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm[J]. Chin. Phys. Lett., 2019, 36(4): 014205
[9] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 014205
[10] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 014205
[11] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 014205
[12] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 014205
[13] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 014205
[14] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 014205
[15] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 014205
Viewed
Full text


Abstract