Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 010301    DOI: 10.1088/0256-307X/31/1/010301
GENERAL |
Joint Remote State Preparation of a Four-Dimensional Quantum State
PENG Jia-Yin1,2**, BAI Ming-Qiang2, MO Zhi-Wen2
1School of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100
2College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066
Cite this article:   
PENG Jia-Yin, BAI Ming-Qiang, MO Zhi-Wen 2014 Chin. Phys. Lett. 31 010301
Download: PDF(483KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present several protocols for joint remote state preparation of a single(two)-quadbit state with real (or complex) coefficients via a projective or positive operator-valued measure. In our schemes, three(five)-quadbit non-maximally entangled state(s) have been employed as the quantum channel and several appropriate mutually orthogonal basis are delicately constructed. Finally, the present schemes are extended to the (N+M) senders' case.

Received: 22 September 2013      Published: 28 January 2014
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/010301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/010301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PENG Jia-Yin
BAI Ming-Qiang
MO Zhi-Wen

[1] Bennett C H, Brassard G and Crepeau C 1993 Phys. Rev. Lett. 70 1895
[2] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[3] Wang X W, Su Y H and Yang G J 2010 Chin. Phys. Lett. 27 100303
[4] Peng J Y and Mo Z W 2013 Chin. Phys. B 22 050310
[5] Wang X W and Yang G J 2009 Phys. Rev. A 79 064306
[6] Yang K Y and Xia Y 2012 Int. J. Theor. Phys. 51 1647
[7] Wang X W and Yang G J 2009 Phys. Rev. A 79 062315
[8] Dong D Y, Chen C L, Li H X and Tarn T J 2008 IEEE Trans. Syst. Man Cybern. B 38 1207
[9] Peng J Y and Mo Z W 2013 Int. J. Quantum Inf. 11 1350004
[10] Bu?ek V and Hillery M 1996 Phys. Rev. A 54 1844
[11] Wang X W, Shan Y G, Xia L X and Lu M W 2007 Phys. Lett. A 364 7
[12] Jiang M, Zhang Z K, Dong D Y, Liu B and Tarn T J 2009 Chaos Solitons Fractals 39 1936
[13] Peng J Y, Luo M X and Mo Z W 2013 Quantum Inf. Process. 12 2325
[14] Wang X W, Zhang D Y, Yang G J, Tang S Q and Xie L J 2011 Phys. Rev. A 84 042310
[15] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[16] Kimble H J 2008 Nature 453 1023
[17] Lo H K 2000 Phys. Rev. A 62 012313
[18] Pati A K 2000 Phys. Rev. A 63 014302
[19] Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902
[20] Devetak I and Berger T 2001 Phys. Rev. Lett. 87 177901
[21] Kurucz Z, Adam P and Janszky J 2006 Phys. Rev. A 73 062301
[22] Hayashi A, Hashimoto T and Horibe M 2003 Phys. Rev. A 67 052302
[23] Berry D W and Sanders B C 2003 Phys. Rev. Lett. 90 027901
[24] Abeyesinghe A and Hayden P 2003 Phys. Rev. A 68 062319
[25] Huang Y X and Zhan M S 2004 Phys. Lett. A 327 404
[26] Yu Y F, Feng J and Zhan M S 2003 Phys. Lett. A 310 329
[27] Kurucz Z, Adam P, Kis Z and Janszky J 2005 Phys. Rev. A 72 052315
[28] Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310
[29] Zhan Y B 2013 Int. J. Theor. Phys. 51 3001
[30] Xiao X Q, Liu J M and Zeng G H 2011 J. Phys. B: At. Mol. Opt. Phys. 44 075501
[31] Peng J Y, Bai M Q and Mo Z W 2013 Quantum Inf. Process. 12 3511
[32] Wang Z Y 2010 Int. J. Theor. Phys. 49 1357

Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 010301
[2] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 010301
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 010301
[4] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 010301
[5] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 010301
[6] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 010301
[7] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 010301
[8] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 010301
[9] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 010301
[10] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 010301
[11] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 010301
[12] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 010301
[13] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 010301
[14] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 010301
[15] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 010301
Viewed
Full text


Abstract