Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 087201    DOI: 10.1088/0256-307X/30/8/087201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effects of the Bridging Bond on Electronic Transport in a D-B-A Device
LI Ming-Jun1, LONG Meng-Qiu1,2**, XU Hui1**
1School of Physics and Electronics, Central South University, Changsha 410083
2Institute of Super Microstructure and Ultrafast Process, Central South University, Changsha 410083
Cite this article:   
LI Ming-Jun, LONG Meng-Qiu, XU Hui 2013 Chin. Phys. Lett. 30 087201
Download: PDF(978KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using density functional theory combined with a nonequilibrium Green's functions approach, the electronic transport properties of different bridges connecting benzene-based heterojunction molecular devices are investigated. We focus on the effects of the bridging bond polarity and its bond length. Our results show that the polar bond plays a significant role in determining the overall conductance of the molecular devices. The effects of a current plateau and the negative differential resistance can be observed. These simulation results suggest that the proposed models may be helpful for designing practical molecular devices.
Received: 04 March 2013      Published: 21 November 2013
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  85.35.-p (Nanoelectronic devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/087201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/087201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Ming-Jun
LONG Meng-Qiu
XU Hui
[1] Joachim C et al 2000 Nature 408 541
[2] Heath J R and Ratner M A 2003 Phys. Today 56 43
[3] Bogani L and Wernsdorfer W L 2008 Nat. Mater. 7 179
[4] Heath J R 2009 Annu. Rev. Mater. Res. 39 1
[5] Tao N J 2006 Nat. Nanotechnol. 1 173
[6] Selzer Y and Allara D L 2006 Annu. Rev. Phys. Chem. 57 593
[7] Kiguchi M et al 2012 Small 8 726
[8] Li Z et al 2008 Phys. Rev. Lett. 100 206802
[9] Zhao P and Liu D S 2012 Chin. Phys. Lett. 29 047302
[10] Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277
[11] Huang F et al 2009 J. Am. Chem. Soc. 131 13886
[12] Staykov A et al 2007 J. Phys. Chem. C 111 11699
[13] Asai Y 2008 Phys. Rev. B 78 045434
[14] Díez-Pérez I et al 2009 Nat. Chem. 1 635
[15] Guo C et al 2012 J. Phys. Chem. C 116 12900
[16] Moth-Poulsen K and Bj?rnholm T 2009 Nat. Nanotechnol. 4 551
[17] Park J et al 2002 Nature 417 722
[18] Long M Q et al 2007 Appl. Phys. Lett. 91 233512
[19] Zhang X J et al 2009 Appl. Phys. Lett. 94 073503
[20] Kondo M et al 2005 Chem. Phys. Lett. 412 55
[21] Zhou Y H et al 2012 Comput. Mater. Sci. 61 145
[22] Ren Y et al 2010 Appl. Phys. Lett. 97 103506
[23] Fang C et al 2010 Phys. Lett. A 374 4465
[24] Tsuji Y et al 2012 J. Phys. Chem. C 116 2575
[25] Li M J et al 2012 Phys. Lett. A 376 1692
[26] Fan Z Q and Chen K Q 2010 Physica E 42 1492
[27] Pan J B et al 2011 Appl. Phys. Lett. 98 092102
[28] Ricks A B et al 2010 J. Am. Chem. Soc. 132 15427
[29] Sedghi G et al 2008 J. Am. Chem. Soc. 130 8582
[30] Kushmerick J G et al 2002 J. Am. Chem. Soc. 124 10654
[31] Lin Z et al 2009 J. Am. Chem. Soc. 131 18060
[32] Maiti S K 2008 J. Nanosci. Nanotechnol. 8 4096
[33] Taylor J et al 2001 Phys. Rev. B 63 245407
[34] Brandbyge M et al 2002 Phys. Rev. B 65 165401
[35] Pati R et al 2008 Phys. Rev. Lett. 100 246801
Related articles from Frontiers Journals
[1] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 087201
[2] Rui-Chun Xiao, Zibo Wang, Zhi-Qiang Zhang, Junwei Liu, and Hua Jiang. Magnus Hall Effect in Two-Dimensional Materials[J]. Chin. Phys. Lett., 2021, 38(5): 087201
[3] Zhen Ning, Bo Fu, Qinwei Shi, and Xiaoping Wang. Universal Minimum Conductivity in Disordered Double-Weyl Semimetal[J]. Chin. Phys. Lett., 2020, 37(11): 087201
[4] Xiao Wang, Guo-Dong Wei. Quantum Scars in Microwave Dielectric Photonic Graphene Billiards[J]. Chin. Phys. Lett., 2020, 37(1): 087201
[5] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 087201
[6] Yi-Heng Yin, Yan-Xiong Niu, Ming Ding, Hai-Yue Liu, Zhen-Jiang Liang. Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials[J]. Chin. Phys. Lett., 2016, 33(05): 087201
[7] LIU Mi, ZHU Rui. Shot Noise of the Conductance through a Superconducting Barrier in Graphene[J]. Chin. Phys. Lett., 2015, 32(12): 087201
[8] ZHOU Shu-Xing, QI Ming, AI Li-Kun, XU An-Huai, WANG Li-Dan, DING Peng, JIN Zhi. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures[J]. Chin. Phys. Lett., 2015, 32(09): 087201
[9] TAN Xun-Qiong. Electronic Transport of the Adsorbed Trigonal Graphene Flake: A First Principles Calculation[J]. Chin. Phys. Lett., 2014, 31(12): 087201
[10] CHEN Bao-Jun, TANG Zhen-An, JU Yan-Jie. A Numerical Method for Modeling the Effects of Irregular Shape on Interconnect Resistance[J]. Chin. Phys. Lett., 2014, 31(05): 087201
[11] WANG Ting-Dong, HUAI Ping. Quantum Confinement Effects in Dynamically Screened Quasi-One-Dimensional Systems[J]. Chin. Phys. Lett., 2013, 30(6): 087201
[12] ZHANG Yi-Jun, ZHAO Jing, ZOU Ji-Jun, NIU Jun, CHEN Xin-Long, CHANG Ben-Kang. The High Quantum Efficiency of Exponential-Doping AlGaAs/GaAs Photocathodes Grown by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(4): 087201
[13] Clóves G. Rodrigues. Onset for the Electron Velocity Overshoot in Indium Nitride[J]. Chin. Phys. Lett., 2012, 29(12): 087201
[14] LI Chuan-Feng, CHEN Geng, GONG Ming, LI Hai-Qiao, NIU Zhi-Chuan. Experimental Research on Carrier Redistribution in InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2012, 29(9): 087201
[15] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 087201
Viewed
Full text


Abstract