Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 084301    DOI: 10.1088/0256-307X/30/8/084301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Bubble Pulse Cancelation in the Time-Frequency Domain Using Warping Operators
NIU Hai-Qiang1,2**, ZHANG Ren-He1, LI Zheng-Lin1,3, GUO Yong-Gang1, HE Li1
1State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Haikou Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Haikou 570105
Cite this article:   
NIU Hai-Qiang, ZHANG Ren-He, LI Zheng-Lin et al  2013 Chin. Phys. Lett. 30 084301
Download: PDF(623KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The received shock waves produced by explosive charges are often polluted by bubble pulses in underwater acoustic experiments. A method based on warping operators is proposed to cancel the bubble pulses in the time-frequency domain. This is applied to the explosive data collected during the Yellow Sea experiment in November 2000. The original received signal is first transformed into a warped signal by warping operators. Then, the warped signal is analyzed in the time-frequency domain. Due to the different features between the shock waves and the bubble pulses in the time-frequency domain for the warped signal, the bubble pulses can be easily filtered out. Furthermore, the shock waves in the original time domain can be retrieved by the inverse warping transformation. The autocorrelation functions and the time-frequency representation show that the bubble pulses can be canceled effectively.
Received: 28 April 2013      Published: 21 November 2013
PACS:  43.30.Bp (Normal mode propagation of sound in water)  
  43.30.Es (Velocity, attenuation, refraction, and diffraction in water, Doppler effect)  
  43.30.Pc (Ocean parameter estimation by acoustical methods; remote sensing; imaging, inversion, acoustic tomography)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/084301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/084301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
NIU Hai-Qiang
ZHANG Ren-He
LI Zheng-Lin
GUO Yong-Gang
HE Li
[1] Zhang Y, Li F H and Li Z L et al 2009 Acta Acust. 34 124 (in Chinese)
[2] Hovem J M 1970 J. Acoust. Soc. Am. 47 281
[3] Lackoff M R and Leblanc L R 1975 J. Acoust. Soc. Am. 57 151
[4] Dicus R L 1981 J. Acoust. Soc. Am. 70 122
[5] Badiey M, Mu Y and Lynch J et al 2002 IEEE J. Oceanic Eng. 27 117
[6] Carroll P 1972 Can. Soc. Explor. Geophys. J. 8 41
[7] Hobbs R and Jakubowicz H 2000 SEG Annu. Meeting (Calgary Canada 6–11 August 2000) p 57
[8] Christie P and Lunnon Z 2009 U. S. Patent 0213691 A1
[9] Ge F X, Zhang Y and Li Z L et al 2011 IEEE J. Oceanic Eng. 36 447
[10] Bonnel J, Nicolas B and Mars J et al 2010 J. Acoust. Soc. Am. 128 719
[11] Bonnel J and Chapman N 2011 J. Acoust. Soc. Am. 130 EL101
[12] Bonnel J, Gervaise C, Nicolas B et al 2012 J. Acoust. Soc. Am. 131 119
[13] Li Z L and Zhang R H 2007 Chin. Phys. Lett. 24 471
Related articles from Frontiers Journals
[1] Ze-Zhong Zhang, Wen-Yu Luo, Ren-He Zhang. An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems[J]. Chin. Phys. Lett., 2018, 35(8): 084301
[2] Fei-Long Zhu, Eric I. Thorsos, Feng-Hua Li. Coupled Perturbed Modes over Sloping Penetrable Bottom[J]. Chin. Phys. Lett., 2017, 34(7): 084301
[3] LI Jun, LI Zheng-Lin, REN Yun, LI Wen, ZHANG Ren-He. Horizontal-Longitudinal Correlations of Acoustic Field in Deep Water[J]. Chin. Phys. Lett., 2015, 32(06): 084301
[4] LUO Wen-Yu, ZHANG Ren-He. A Benchmark Model for Three-Dimensional Sound Propagation in an Ideal Wedge-Shaped Waveguide[J]. Chin. Phys. Lett., 2015, 32(02): 084301
[5] QIN Ji-Xing, LUO Wen-Yu, ZHANG Ren-He, YANG Chun-Mei. Three-Dimensional Sound Propagation and Scattering in Two-Dimensional Waveguides[J]. Chin. Phys. Lett., 2013, 30(11): 084301
[6] QIN Ji-Xing, LUO Wen-Yu, ZHANG Ren-He, YANG Chun-Mei. Numerical Solution of Range-Dependent Acoustic Propagation[J]. Chin. Phys. Lett., 2013, 30(7): 084301
[7] LUO Wen-Yu, YANG Chun-Mei, QIN Ji-Xing, ZHANG Ren-He. Sound Propagation in a Wedge with a Rigid Bottom[J]. Chin. Phys. Lett., 2012, 29(10): 084301
[8] LUO Wen-Yu**, YANG Chun-Mei, ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides[J]. Chin. Phys. Lett., 2012, 29(1): 084301
[9] WANG Hao-Zhong, WANG Ning, GAO Da-Zhi . Data-Derived Estimation of Source Depth Using Vertical Line Array Data in Shallow Water[J]. Chin. Phys. Lett., 2011, 28(11): 084301
[10] LI Qian-Qian, **, LI Zheng-Lin, ZHANG Ren-He . Applications of Waveguide Invariant Theory to the Analysis of Interference Phenomena in Deep Water[J]. Chin. Phys. Lett., 2011, 28(3): 084301
[11] LUO Wen-Yu**, SCHMIDT Henrik. Three-Dimensional Mode Coupling around a Conical Seamount and the Use of Random Discretization[J]. Chin. Phys. Lett., 2010, 27(11): 084301
[12] LUO Wen-Yu, SCHMIDT Henrik. A Spectral Coupled-Mode Formulation for Sound Propagation around Axisymmetric Seamounts[J]. Chin. Phys. Lett., 2010, 27(9): 084301
[13] ZHANG Yan-Jun, ZHANG Ren-He, LI Feng-Hua. Frequency Dependence of Transverse Correlation Coefficient in the Yellow Sea[J]. Chin. Phys. Lett., 2010, 27(8): 084301
[14] ZHAO Zhen-Dong, WANG Ning, GAO Da-Zhi, WANG Hao-Zhong. Broadband Source Ranging in Shallow Water Using the Ω-Interference Spectrum[J]. Chin. Phys. Lett., 2010, 27(6): 084301
[15] LI Feng-Hua, ZHANG Ren-He. Frequency Dependence of Longitudinal Correlation Length inthe Yellow Sea[J]. Chin. Phys. Lett., 2008, 25(7): 084301
Viewed
Full text


Abstract