Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 077802    DOI: 10.1088/0256-307X/30/7/077802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Fano-Like Resonance in Self-Assembled Trimer Clusters
ZHANG Mei1, LI Liang-Sheng2,3**, ZHENG Ning3, SHI Qing-Fan3**
1Faculty of Computers, Guangdong University of Technology, Guangzhou 510006
2Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854
3School of Physics, Beijing Institute of Technology, Beijing 100081
Cite this article:   
ZHANG Mei, LI Liang-Sheng ZHENG Ning, SHI Qing-Fan 2013 Chin. Phys. Lett. 30 077802
Download: PDF(874KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We illustrate that three identical nanocylinders self-assembled into a trimer with a small interparticle gap separation support strong Fano-like interference. The asymmetry line shape of the Fano-like resonance can be controlled by modifying the cluster structures, and a narrow linewidth between a peak and a dip is displayed in the line trimer. The resonant behaviors of the trimers could be strengthened by increasing the permittivity of the nanorods, and the asymmetry resonance is highly sensitive to the angle of the incident wave due to the orientation-dependent coupling between the cylinders in the cluster. The present study provides a way to investigate the environmental change caused by the reshaped asymmetry line, which can be applied to future high-performance resonance sensors.
Received: 23 February 2013      Published: 21 November 2013
PACS:  78.67.Qa (Nanorods)  
  03.50.De (Classical electromagnetism, Maxwell equations)  
  42.25.Bs (Wave propagation, transmission and absorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/077802       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/077802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Mei
LI Liang-Sheng ZHENG Ning
SHI Qing-Fan
[1] Lukyanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, H Giessen and Chong C T 2010 Nat. Mater. 9 707
[2] Liu N, Mario H, Thomas W, Alivisatos A P and Harald G 2011 Science 332 1407
[3] Fedotov V A, Rose1 M, Prosvirnin S L, Papasimakis N and Zheludev N I 2007 Phys. Rev. Lett. 99 147401
[4] McLeod A, Weber-Bargioni A, Zhang Z, Dhuey S, Harteneck B, Neaton J B, Cabrini S and Schuck P J 2011 Phys. Rev. Lett. 106 037402
[5] Yang Z, Zhang Z, Zhang L, Li Q, Hao Z and Wang Q 2011 Opt. Lett. 36 1542
[6] Chen F, Negash A and Johnston R L 2011 AIP Adv. 1 032134
[7] Tripathy S, Renaud M, Vivian K L, Siew L T, Enyi Y, Arnaud A, Lucien S, Christian G, Han M Y and Adnen M 2011 Nano Lett. 11 431
[8] Lev C and Gilad H 2011 Nano Lett. 11 2440
[9] Fan J A, Kui B, Wu C, Bao J, Rizia B, Naomi J H, Vinothan N M, Gennady S, Peter N and Federico C 2010 Nano Lett. 10 4680
[10] Fan J A, Wu C, Bao K, Bao J, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G and Capasso F 2010 Science 328 1135
[11] Lassiter J B Heidar S, Jonathan A F, Janardan K, Federico C, Peter N and Naomi J H 2010 Nano Lett. 10 3184
[12] Tribelsky M I, Sergej F, Andrey E M, Andrey V G and Yuri S K 2008 Phys. Rev. Lett. 100 043903
[13] Andrey E M, Sergej F and Yuri S K 2010 Rev. Mod. Phys. 82 2257
[14] Niels V, Yannick S, Heidar S, Feng H, Victor V M, Pol V D, Peter N and Stefan A M 2009 Nano Lett. 9 1663
[15] Jose M R, Ramon A A and Luis M L 2011 Nanoscale 3 1304
[16] Teperik T V and Degiron A 2012 Phys. Rev. Lett. 108 147401
[17] Erb R M, Son H S, Samanta B, Rotello V M and Yellen B B 2009 Nature 457 999
[18] Bo Y, Svetlana V B and Reinhard B M 2011 J. Phys. Chem. C 115 4578
[19] Yasumoto K (Edited) 2006 Electromagnetic Theory And Applications For Photonic Crystals (Florida: CRC Press)
[20] Petru G, Gregory V, Marine L, Nathalie B, Riad H, Jean-Luc P and Stephane C 2012 Phys. Rev. Lett. 109 143903
Related articles from Frontiers Journals
[1] Yi-Xuan Wang, Qing Yang, Chuang Liu, Guang-Xia Wang, Min Wu, Hao Liu, Yong-Ming Sui, Xin-Yi Yang. Ultrafine Mo-Doped Co$_{2}$P Nanorods Anchored on Reduced Graphene Oxide as Efficient Electrocatalyst for the Hydrogen Evolution Reaction[J]. Chin. Phys. Lett., 2020, 37(5): 077802
[2] Yi-Tao Yang, Chong-Hong Zhang, Chang-Hao Su, Zhao-Nan Ding, Yin Song, Yu-Guang Chen. Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions[J]. Chin. Phys. Lett., 2018, 35(9): 077802
[3] Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 077802
[4] WANG Wen-Jie, CHEN Peng, YU Zhi-Guo, LIU Bin, XIE Zi-Li, XIU Xiang-Qian, WU Zhen-Long, XU Feng, XU Zhou, HUA Xue-Mei, ZHAO Hong, HAN Ping, SHI Yi, ZHANG Rong, ZHENG You-Dou . High-Efficiency InGaN/GaN Nanorod Arrays by Temperature Dependent Photoluminescence[J]. Chin. Phys. Lett., 2013, 30(7): 077802
[5] CUI Yin-Fang, WANG Cong, WU Su-Juan, LIU Yu, WANG Tian-Min. Preparation and Photocatalytic Activity of ZnO/Fe2O3 Nanorod Arrays and ZnO/NiO Nanotube Arrays[J]. Chin. Phys. Lett., 2012, 29(3): 077802
[6] ZHENG Zhong-Kui, DUANMU Qing-Duo**, ZHAO Dong-Xu**, WANG Li-Dan, SHEN De-Zhen. The Annealing-Induced Shape Deformation of Hydrothermal-Grown ZnO Nanorods[J]. Chin. Phys. Lett., 2012, 29(1): 077802
Viewed
Full text


Abstract