Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 077404    DOI: 10.1088/0256-307X/30/7/077404
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Finite Temperature Effect on Josephson Junction between an s-Wave Superconductor and an s±-Wave Superconductor
WANG Da1,2, LU Hong-Yan1,3**, WANG Qiang-Hua1
1National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093
2Department of Physics, University of California, San Diego, California 92093, USA
3School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000
Cite this article:   
WANG Da, LU Hong-Yan, WANG Qiang-Hua 2013 Chin. Phys. Lett. 30 077404
Download: PDF(973KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate a Josephson junction between a one-band and a multi-band s-wave superconductor. When the multi-band lead is an s±-wave superconductor, we find that the critical Josephson current may change its sign when the temperature changes. Our result confirms that this is a widespread effect of the s±-wave superconductor, independent of the type of the junction, the ratios of the gaps and superconducting transition temperatures, as long as the tunneling matrix elements have suitable values. This novel effect comes directly from the opposite gap signs. We propose that the observation of this phenomena can be used to detect the s±-wave pairing symmetry in iron-based superconductors.
Received: 08 April 2013      Published: 21 November 2013
PACS:  74.50.+r (Tunneling phenomena; Josephson effects)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.70.Xa (Pnictides and chalcogenides)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/077404       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/077404
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Da
LU Hong-Yan
WANG Qiang-Hua
[1] Kamihara Y et al 2008 J. Am. Chem. Soc. 130 3296
[2] Mazin I I 2010 Nature 464 183
[3] Boeri L, Dolgov O V and Golubov A A 2008 Phys. Rev. Lett. 101 026403
[4] Mazin I I et al 2008 Phys. Rev. Lett. 101 057003
[5] Kuroki K et al 2008 Phys. Rev. Lett. 101 087004
[6] Yao Z J, Li J X and Wang Z D 2009 New J. Phys. 11 025009
[7] Wang F et al 2009 Phys. Rev. Lett. 102 047005
[8] Chubukov A V, Efremov D V and Eremin I 2008 Phys. Rev. B 78 134512
[9] Seo K, Bernevig B A and Hu J 2008 Phys. Rev. Lett. 101 206404
[10] Chen W Q et al 2009 Phys. Rev. Lett. 102 047006
[11] Ding H et al 2008 Europhys. Lett. 83 47001
[12] Kondo T et al 2008 Phys. Rev. Lett. 101 147003
[13] Hashimoto K et al 2009 Phys. Rev. Lett. 102 017002
[14] Grafe H J et al 2008 Phys. Rev. Lett. 101 047003
[15] Chen T Y et al 2008 Nature 453 1224
[16] Daghero D et al 2011 Rep. Prog. Phys. 74 124509
[17] Fletcher J D et al 2009 Phys. Rev. Lett. 102 147001
[18] Dong J K et al 2010 Phys. Rev. Lett. 104 087005
[19] Nakai Y et al 2010 Phys. Rev. B 81 020503
[20] Zhang Y et al 2012 Nat. Phys. 8 371
[21] Hashimoto K et al 2012 Phys. Rev. Lett. 108 047003
[22] Song C L et al 2011 Science 332 1410
[23] Christianson A D et al 2008 Nature 456 930
[24] Chi S et al 2009 Phys. Rev. Lett. 102 107006
[25] Hanaguri T et al 2010 Science 328 474
[26] Teague M L et al 2011 Phys. Rev. Lett. 106 087004
[27] Chen C T et al 2010 Nat. Phys. 6 260
[28] Josephson B 1962 Phys. Lett. 1 251
[29] Van Harlingen D J 1995 Rev. Mod. Phys. 67 515
[30] Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969
[31] Parker D and Mazin I I 2009 Phys. Rev. Lett. 102 227007
[32] Linder J, Sperstad I B and Sudb? A 2009 Phys. Rev. B 80 020503
[33] Chen W Q et al 2009 Phys. Rev. Lett. 103 207001
[34] Tsai W F et al 2009 Phys. Rev. B 80 012511
[35] Ota Y, Machida M and Koyama T 2010 Phys. Rev. B 82 140509
[36] Ota Y et al 2010 Phys. Rev. B 81 214511
[37] Ambegaokar V and Baratoff A 1963 Phys. Rev. Lett. 10 486
[38] Ambegaokar V and Baratoff A 1963 Phys. Rev. Lett. 11 104
[39] Suhl H, Matthias B T and Walker L R 1959 Phys. Rev. Lett. 3 552
[40] Katase T et al 2010 Supercond. Sci. Technol. 23 082001
[41] Seidel P 2011 Supercond. Sci. Technol. 24 043001
Related articles from Frontiers Journals
[1] Ziwen Chen, Yulong Li, Rui Zhu, Jun Xu, Tiequan Xu, Dali Yin, Xinwei Cai, Yue Wang, Jianming Lu, Yan Zhang, and Ping Ma. High-Temperature Superconducting YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ Josephson Junction Fabricated with a Focused Helium Ion Beam[J]. Chin. Phys. Lett., 2022, 39(7): 077404
[2] Wei-Feng Zhuang, Yue-Xin Huang, and Ming Gong. Angular Momentum Josephson Effect between Two Isolated Condensates[J]. Chin. Phys. Lett., 2021, 38(6): 077404
[3] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 077404
[4] Shaohua Wang, Qiangwei Yin, Hechang Lei. Physical Properties of [$A_{6}$Cl][Fe$_{24}$Se$_{26}$]($A$=K, Rb) with Self-Similar Structure[J]. Chin. Phys. Lett., 2020, 37(1): 077404
[5] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 077404
[6] Feng Li, Wei Peng, Zhen Wang. The 0–$\pi$ Phase Transition in Epitaxial NbN/Ni$_{60}$Cu$_{40}$/NbN Josephson Junctions[J]. Chin. Phys. Lett., 2019, 36(4): 077404
[7] Yan-Na Li, Wei-Dong Li. Phase Dissipation of an Open Two-Mode Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2017, 34(7): 077404
[8] Xing-Yuan Hou, Ya-Dong Gu, Zong Wang, Hai Zi, Xiang-De Zhu, Meng-Di Zhang , Chun-Hong Li, Cong Ren, Lei Shan. Proximity-Induced Superconductivity in New Superstructures on 2H-NbSe$_2$ Surface[J]. Chin. Phys. Lett., 2017, 34(7): 077404
[9] Jing-Hui Li. Enhancement of Resonant Activation by Constant Bias Current for Superconducting Junction[J]. Chin. Phys. Lett., 2016, 33(11): 077404
[10] Bin-He Wu, Xu-Yu Feng, Chao Wang, Xiao-Feng Xu, Chun-Rui Wang. Anomalous Direct-Current Josephson Effect in Semiconductor Nanowire Junctions$^{*}$[J]. Chin. Phys. Lett., 2016, 33(01): 077404
[11] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 077404
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 077404
[13] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 077404
[14] Tatnatchai Suwannasit, Rassmidara Hoonsawat, I-Ming Tang, Bumned Soodchomshom. Josephson Effect in Graphene: Comparison of Real and Pseudo Vector Potential Barriers[J]. Chin. Phys. Lett., 2014, 31(03): 077404
[15] Hamidreza Emamipour, Jafar Emamipour. Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors[J]. Chin. Phys. Lett., 2012, 29(3): 077404
Viewed
Full text


Abstract