Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 077402    DOI: 10.1088/0256-307X/30/7/077402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
An Insight into the Structural, Electronic and Transport Characteristics of XIn2S4 (X = Zn, Hg) Thiospinels using a Highly Accurate All-Electron FP-LAPW+Lo Method
Masood Yousaf1, M. A. Saeed1**, Ahmad Radzi Mat Isa1, H. A. Rahnamaye Aliabad2, M. R. Sahar1
1Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai-81310, Johor, Malaysia
2Department of Physics, Hakim Sabzevari University, Iran
Cite this article:   
Masood Yousaf, M. A. Saeed, Ahmad Radzi Mat Isa et al  2013 Chin. Phys. Lett. 30 077402
Download: PDF(741KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The highly accurate full-potential linearized augmented plane wave plus local orbital method is employed to calculate the structural, electronic and transport properties of HgIn2S4 and ZnIn2S4. For ZnIn2S4, the calculated In–S bond length is in good agreement with the experimental data. Bulk moduli results suggest that ZnIn2S4 can afford more compressional effects than HgIn2S4. The present study confirms that both HgIn2S4 and ZnIn2S4 are indirect band gap materials with band gap values of 0.705 eV and 1.533 eV respectively. The localized region existing in the most bottom valance band of both materials splits into states by 1 eV energy difference under the spin orbital coupling effect. Contour plots of charge density predict that chemical bonding in these compounds is a mixture of ionic and covalent characteristics. Effective mass results reveal that mobility of charge carriers in ZnIn2S4 is greater than that in HgIn2S4.
Received: 28 January 2013      Published: 21 November 2013
PACS:  74.20.Pq (Electronic structure calculations)  
  74.25.Gz (Optical properties)  
  31.15.A- (Ab initio calculations)  
  31.15.E-  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/077402       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/077402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Masood Yousaf
M. A. Saeed
Ahmad Radzi Mat Isa
H. A. Rahnamaye Aliabad
M. R. Sahar
[1] Yousaf M, Saeed M, Isa A R M, Shaari A and Aliabad H A R 2012 Chin. Phys. Lett. 29 107401
[2] Yousaf M, Saeed M, Isa A R M, Aliabad H and Noor N 2012 Int. J. Mod. Phys. B 26 1250198
[3] Wang T X, Xu S H and Yang F X 2012 Mater. Lett. 83 46
[4] Chen Z, Li D, Xiao G, He Y and Xu Y J 2012 J. Solid State Chem. 186 247
[5] Chen Y, Huang R, Chen D, Wang Y, Liu W, Li X and Li Z 2012 ACS Appl. Mater. Interfaces 4 2273
[6] Chai B, Peng T, Zeng P and Zhang X 2012 Dalton Trans. 41 1179
[7] Xu Z, Li Y, Peng S, Lu G and Li S 2012 RSC Adv. 2 3458
[8] Shen S, Guo P, Zhao L, Du Y and Guo L 2011 J. Solid State Chem. 184 2250
[9] Fang F, Chen L, Chen Y B and Wu L M 2010 J. Phys. Chem. C 114 2393
[10] Fan W J, Zhou Z F, Xu W B, Shi Z F, Ren F M, Ma H H and Huang S W 2010 Int. J. Hydrogen Energy 35 6525
[11] Lei Z B, You W S, Liu M Y, Zhou, G H, Takata T, Hara M, Domen K and Li C 2003 Chem. Commun. 17 2142
[12] Romeo N, Dallaturca A, Braglia R and Sberveglieri G 1973 Appl. Phys. Lett. 22 21
[13] Seo W S, Otsuka R, Okuno H, Ohta M and Koumoto K 1999 J. Mater. Res. 14 4176
[14] Cai W, Zhao Y, Hu J, Zhong J and Xiang W 2011 J. Mater. Sci. Technol. 27 559
[15] Li Y, Zhanga K, Penga S, Lu G and Li S 2012 J. Mol. Catal. A: Chem. 363 354
[16] Shen S, Zhao L, Guan X and Guo L 2012 J. Phys. Chem. Solids 73 79
[17] Fortin E, Fafard S, Anedda A, Ledda F and Charlebois A 1991 Solid State Commun. 77 165
[18] Lee S J, Kim J E and Park H Y 2003 J. Mater. Res. 18 733
[19] Georgobiani A, Radautsan S and Tiginyanu I 1985 Sov. Phys. Semicond. 19 121
[20] Radautsan S I and Tiginyanu I M 1993 Jpn. J. Appl. Phys. Suppl. 32 5
[21] Zhao J W, Qin L R and Zhang L D 2007 Solid State Commun. 141 663
[22] Madsen G K H, Blaha P, Schwarz K, Sj?stedt E and Nordstr?m L 2001 Phys. Rev. B 64 195134
[23] Sj?stedt E, Nordstr?m L and Singh D J 2000 Solid State Commun. 114 15
[24] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, an Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Austria: Vienna University of Technology)
[25] Perdew J P and Levy M 1983 Phys. Rev. Lett. 51 1884
[26] Sham L J and Schlüter M 1983 Phys. Rev. Lett. 51 1888
[27] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[28] Hahn H, Klingler W, Anorg and Z 1950 Z. Anorg. Allg. Chem. 263 177
[29] Sriram M, McMichael P, Waghray A, Kumta P, Misture S and Wang X L 1998 J. Mater. Sci. 33 4333
[30] Slater J C 1960 Quantum Theory of Atomic Structure (New York: McGraw-Hill)
[31] Winkler R 2003 Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer)
[32] Beun J A, Nitsche R and Lichtensteiger M 1961 Physica 27 448
[33] Huang J, Cheuk W, Wu Y, Ho W K and Lee S C 2012 Catal. Sci. Technol. 2 1825
[34] Xu Y N and Ching W Y 1991 Phys. Rev. B 43 4461
[35] Yousaf M, Saeed M A, Ahmed R, Alsardia M M and Isa A R M and Shaari A 2012 J. Optoelectron. Adv. Mater. 6 902
[36] Yousaf M, Saeed M, Ahmed R, Alsardia M M, Isa A R M and Shaari A 2012 Commun. Theor. Phys. 58 777
Related articles from Frontiers Journals
[1] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 077402
[2] Yiding Liu, Qiang Fan, Jianhui Yang, Lili Wang, Weibin Zhang, and Gang Yao. Predicted High-Temperature Superconductivity in Rare Earth Hydride ErH$_{2}$ at Moderate Pressure[J]. Chin. Phys. Lett., 2022, 39(12): 077402
[3] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 077402
[4] Lin Feng, Chen-Chen Guo, Xue-Ying Zhang, Hai-Cheng Xuan, Wen-Hong Wang, En-Ke Liu, Guang-Heng Wu. Possible Martensitic Transformation in Heusler Alloy Pt$_{2}$MnSn from First Principles[J]. Chin. Phys. Lett., 2018, 35(3): 077402
[5] LIANG Yi, WU Xian-Xin, HU Jiang-Ping. Electronic Structure Properties in the Nematic Phases of FeSe[J]. Chin. Phys. Lett., 2015, 32(11): 077402
[6] XU Di-Fei, DU Yong-Ping, WANG Zhen, LI Yu-Peng, NIU Xiao-Hai, YAO Qi, Dudin Pavel, XU Zhu-An, WAN Xian-Gang, FENG Dong-Lai. Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP[J]. Chin. Phys. Lett., 2015, 32(10): 077402
[7] WU Xian-Xin, LE Cong-Cong, YUAN Jing, FAN Heng, HU Jiang-Ping. Magnetism in Quasi-One-Dimensional A2Cr3As3 (A=K,Rb) Superconductors[J]. Chin. Phys. Lett., 2015, 32(5): 077402
[8] A. Manzar, G. Murtaza, R. Khenata, Masood Yousaf, S. Muhammad, Hayatullah. Electronic and Optic Properties of Cubic Spinel CdX2O4 (X=In, Ga, Al) through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2014, 31(06): 077402
[9] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic and Optical Properties of Spinel GeMg2O4 and GeCd2O4[J]. Chin. Phys. Lett., 2013, 30(12): 077402
[10] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic Band Profile and Optical Response of Spinel MgIn2O4 through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2013, 30(6): 077402
[11] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic Band Structure and Optical Response of Spinel SnX2O4 (X = Mg, Zn) through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2013, 30(4): 077402
[12] Masood Yousaf, M. A. Saeed, Ahmad Radzi Mat Isa, Amiruddin Shaari, H. A. Rahnamaye Aliabad. Electronic Band Structure and Optical Parameters of Spinel SnMg2O4 by Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2012, 29(10): 077402
[13] DAI Jun, LI Zhen-Yu, YANG Jin-Long. Electron-phonon Coupling in Gallium-Doped Germanium[J]. Chin. Phys. Lett., 2010, 27(8): 077402
Viewed
Full text


Abstract