Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 069801    DOI: 10.1088/0256-307X/30/6/069801
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
The Generalized f(R) Model with Coupling in 5D Spacetime
WU Ya-Bo**, ZHAO Yue-Yue, LU Jian-Bo, LI Jian, ZHANG Wen-Xin, CHANG Hong
Department of Physics, Liaoning Normal University, Dalian 116029
Cite this article:   
WU Ya-Bo, ZHAO Yue-Yue, LU Jian-Bo et al  2013 Chin. Phys. Lett. 30 069801
Download: PDF(543KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The generalized f(R) gravity with coupling in five-dimensional (5D) spacetime is studied on the basis of both the 4D generalized f(R) gravity with coupling and the pure f(R) gravity without coupling in 5D spacetime. Specifically, by assuming a hypersurface-orthogonal space-like Killing vector field in 5D spacetime, the generalization of the 4D generalized f(R) gravity to 5D can be realized, which can give the reduced 4-metric coupled with two scalar fields. In particular, we discuss a special class of models, i.e., f1(R)=f2(R)=αRm (m≠1), and choose B(Lm)=Lm= in the homogeneous and isotropic cosmology with the 4D Friedmann–Robertson–Walker metric. The numerical analysis shows that the parameter m can be constrained by means of the current observations for the deceleration parameter, which implies that this generalized f(R) model with coupling in 5D spacetime can account for the present accelerated expansion of the universe.
Received: 28 March 2013      Published: 31 May 2013
PACS:  98.80.-k (Cosmology)  
  98.80.Jk (Mathematical and relativistic aspects of cosmology)  
  04.20.-q (Classical general relativity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/069801       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/069801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Ya-Bo
ZHAO Yue-Yue
LU Jian-Bo
LI Jian
ZHANG Wen-Xin
CHANG Hong
[1] Riess A G et al 1998 Astron. J. 116 1009
[2] Perlmutter S et al 1999 Astrophys. J. 517 565
[3] Copeland E J, Sami M and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 183
[4] Xu L X, Zhang C W and Liu H Y 2007 Chin. Phys. Lett. 24 2459
[5] Fu M H, Wu Y B and He J 2008 Chin. Phys. Lett. 25 347
[6] Dong S M, Wu P X 2007 Chin. Phys. Lett. 24 1782
[7] Wu P X, Yu H W 2007 Chin. Phys. Lett. 24 843
[8] Xu L X, Lu J B et al 2011 Chin. Phys. B 20 079801
[9] Li F Q, Tao B X and Ji S Y 2004 Chin. Phys. B 13 1830
[10] Bennett C L et al 2003 Astrophys. J. Suppl. Ser. 148 1
[11] Brans C and Dicke R H 1961 Phys. Rev. 124 925
[12] Faraoni V 2004 Cosmology in Scalar-Tensor Gravity (Dordrecht: Kluwer Academic)
[13] Dvali G et al 2000 Phys. Lett. B 485 208
[14] Maartens R 2004 Living Rev. Relativ. 7 7
[15] Bekenstein J D 2004 Phys. Rev. D 70 083509
[16] Jacobson T and Mattingly D 2001 Phys. Rev. D 64 024028
[17] Felice A D and Tsujikawa S 2010 Living Rev. Relativ. 13 3
[18] Carroll S M, Duvvuri V, Trodden M and Turner M S 2004 Phys. Rev. D 70 043528
[19] Bertolami O, Boehmer C G, Harko T and Lobo F S N 2007 Phys. Rev. D 75 104016
[20] Bertolami O and Paramos J 2008 Phys. Rev. D 77 084018
[21] Bertolami O and Sequeira M C 2009 Phys. Rev. D 79 104010
[22] Sotiriou T P and Faraoni V 2010 Rev. Mod. Phys. 82 451
[23] Nojiri S and Odintsov S D 2007 Int. J. Geom. Meth. Mod. Phys. 4 115
[24] Capozziello S 2002 Int. J. Mod. Phys. D 11 483
[25] Nojiri S and Odintsov S D 2004 Gen. Relativ. Gravit. 36 1765
[26] Dolgov A D and Kawasaki M 2003 Phys. Lett. B 573 1
[27] Faraoni V 2006 Phys. Rev. D 74 104017
[28] Faraoni V 2007 Phys. Rev. D 76 127501
[29] Harko T 2008 Phys. Lett. B 669 376
[30] Wu Y B, Zhao Y Y et al 2012 Phys. Lett. B 717 323
[31] Wang J, Wu Y B et al 2010 Phys. Lett. B 689 133
[32] Wang J, Wu Y B et al 2010 Eur. Phys. J. C 69 541
[33] Duff M J, Nilsson B E W and Pope C N 1986 Phys. Rep. 130 1
[34] Arkani-Hamed N, Dimopoulos S and Dvali G 1998 Phys. Lett. B 429 263
[35] Arkani-Hamed N, Dimopoulos S and Dvali G 1999 Phys. Rev. D 59 086004
[36] Han T, Lykken J D and Zhang R 1999 Phys. Rev. D 59 105006
[37] Giudice G F, Rattazzi R and Wells J D 1999 Nucl. Phys. B 544 3
[38] Darabi F and Wesson P S 2002 Phys. Lett. B 527 1
[39] Chang B R, Lu J B, Liu H Y et al 2008 Chin. Phys. Lett. 25 802
[40] Wanas M I, Gamal G L N and Nowaya A A 2012 Chin. Phys. B 21 049801
[41] Darabi F 2010 Mod. Phys. Lett. A 25 1635
[42] Huang B, Li S and Ma Y 2010 Phys. Rev. D 81 064003
[43] Geroch R 1971 J. Math. Phys. 12 918
[44] Yang X, Ma Y et al 2003 Phys. Rev. D 68 024006
[45] Appelquist T, Chodos A and Freund P G O, 1987 Modern Kaluza-Klein Theories, Frontiers in Physics Vol. 65 (Cambridge: Addison-Wesley)
[46] Mohammedi N 2002 Phys. Rev. D 65 104018
[47] Qiang L, Ma Y et al 2005 Phys. Rev. D 71 061501
[48] Frieman J, Turner M and Huterer D 2008 Annu. Rev. Astron. Astrophys. 46 385
Related articles from Frontiers Journals
[1] Jing Yang, Xin-Yan Fan, Chao-Jun Feng, and Xiang-Hua Zhai. Latest Data Constraint of Some Parameterized Dark Energy Models[J]. Chin. Phys. Lett., 2023, 40(1): 069801
[2] Jun Wang, Li-Jia Cao. Gravitational constant in f(R) theories of gravity with non-minimal coupling between matter and geometry[J]. Chin. Phys. Lett., 2018, 35(12): 069801
[3] Ya-Bo Wu, Xue Zhang, Bo-Hai Chen, Nan Zhang, Meng-Meng Wu. Energy Conditions and Constraints on the Generalized Non-Local Gravity Model[J]. Chin. Phys. Lett., 2017, 34(7): 069801
[4] D. Aberkane, N. Mebarki, S. Benchikh. Viscous Modified Chaplygin Gas in Classical and Loop Quantum Cosmology[J]. Chin. Phys. Lett., 2017, 34(6): 069801
[5] Jie An, Bao-Rong Chang, Li-Xin Xu. Cosmic Constraints to the $w$CDM Model from Strong Gravitational Lensing[J]. Chin. Phys. Lett., 2016, 33(07): 069801
[6] He-Kun Li, Pu-Xun Wu, Hong-Wei Yu. Test of the Cosmic Transparency with the Baryon Acoustic Oscillation and Type Ia Supernova Data[J]. Chin. Phys. Lett., 2016, 33(05): 069801
[7] Si-Yu Wu, Ya-Bo Wu, Yue-Yue Zhao, Xue Zhang, Cheng-Yuan Zhang, Bo-Hai Chen. Consistency Conditions and Constraints on Generalized $f(R)$ Gravity with Arbitrary Geometry-Matter Coupling[J]. Chin. Phys. Lett., 2016, 33(03): 069801
[8] Khurshudyan M., Pasqua A., Sadeghi J., Farahani H.. Quintessence Cosmology with an Effective Λ-Term in Lyra Manifold[J]. Chin. Phys. Lett., 2015, 32(10): 069801
[9] ZHU Wen-Tao, WU Pu-Xun, YU Hong-Wei. Constraining the Generalized and Superfluid Chaplygin Gas Models with the Sandage–Loeb Test[J]. Chin. Phys. Lett., 2015, 32(5): 069801
[10] YANG Lei, YANG Wei-Qiang, XU Li-Xin. Constraining Equation of State of Dark Matter: Including Weak Gravitational Lensing[J]. Chin. Phys. Lett., 2015, 32(5): 069801
[11] WU Ya-Bo, TONG Hai-Dan, YANG Hao, LU Jian-Bo, ZHAO Yue-Yue, LU Jun-Wang, ZHANG Xue. Reconstruction of New Holographic Chaplygin Gas Model with Viscosity[J]. Chin. Phys. Lett., 2014, 31(2): 069801
[12] Bob Osano. The Decoupling of Scalar-Modes from a Linearly Perturbed Dust-Filled Bianchi Type-I Model[J]. Chin. Phys. Lett., 2014, 31(1): 069801
[13] V. K. Shchigolev. Cosmology with an Effective Λ-Term in Lyra Manifold[J]. Chin. Phys. Lett., 2013, 30(11): 069801
[14] LI Hui, ZHANG Hong-Sheng, ZHANG Yi. A Generalized Semi-Holographic Universe[J]. Chin. Phys. Lett., 2013, 30(8): 069801
[15] M. Farasat Shamir, Adil Jhangeer, and Akhlaq Ahmad Bhatti. Conserved Quantities in f(R) Gravity via Noether Symmetry[J]. Chin. Phys. Lett., 2012, 29(8): 069801
Viewed
Full text


Abstract