Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 068401    DOI: 10.1088/0256-307X/30/6/068401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
The Realization of Terahertz Image Reconstruction with High Resolution Based on the Amplitude of the Echoed Wave by using the Phase Retrieval Algorithm
GAO Xiang1,2, LI Chao1,2**, FANG Guang-You1,2
1Institute of Electronics, Chinese Academy of Sciences, Beijing 100190
2Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
GAO Xiang, LI Chao, FANG Guang-You 2013 Chin. Phys. Lett. 30 068401
Download: PDF(635KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An indirect imager working at terahertz band is presented and implemented, which is suitable for high-resolution planar object detection. The proposed imager employs a simple quasi-optics design to transmit and to receive terahertz waves, and adopts incoherent detection technology to extract the intensity of echoed signal, which results in a relatively low complexity and cost. Moreover, the Fienup Fourier phase-retrieval algorithm is successfully modified and is applied to retrieve the phase of the echoed signal and reconstruct the target image. Imaging experiments on typical planar objects are performed with the imager working at 0.2 THz, and the experimental results demonstrate the good performance of the proposed imager and validate the effectiveness of the reconstruction algorithm.
Received: 29 January 2013      Published: 31 May 2013
PACS:  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/068401       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/068401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Xiang
LI Chao
FANG Guang-You
[1] Fitzgerald A, Cole B and Taday P 2005 J. Pharmaceutical Sci. 94 177
[2] Xi Z J, Xiao T Q, Zhang Z Y, Yu X H, Chen M and Xu H J 2006 Chin. Phys. Lett. 23 352
[3] Appleby R and Wallace B H 2007 IEEE Trans. Antennas Propag. 55 2944
[4] Chen H, Ma S H, Yan W X, Wu X M and Wang X Z 2013 Chin. Phys. Lett. 30 030702
[5] Mencagli B, Scrascia G and Cibella S 2008 The 33rd International Conference on Infrared, Millimeter and Terahertz Waves (California, USA 15–19 September 2008) p 1
[6] Sheen D M, McMakin D L, Hall T E and Severtsen R H 2009 IEEE Conference on Technologies for Homeland Security (Waltham MA USA 11–12 May 2009) p 440
[7] Gao X, Li C, Gu S M and Fang G Y 2012 IEEE Antennas Wireless Propag. Lett. 11 787
[8] Tamminen A, Laurinaho J A and Raisanen A V 2008 Proc. European Radar Conference (Amsterdam 27–31 October 2008) p 168
[9] Heimbeck M S, Kim M K, Gregory D A and Everitt H O 2011 Opt. Express 19 9192
[10] Fienup J R 1978 Opt. Lett. 3 27
[11] Zhao J, Wang D Y, Zhang F C and Wang Y X 2011 Opt. Eng. 50 091310
[12] Liu G and Scott P D 1987 J. Opt. Soc. Am. A 4 159
Related articles from Frontiers Journals
[1] Xiao-Yu Liu, Yong Zhang, De-Jiao Xia, Tian-Hao Ren, Jing-Tao Zhou, Dong Guo, Zhi Jin. A High-Sensitivity Terahertz Detector Based on a Low-Barrier Schottky Diode[J]. Chin. Phys. Lett., 2017, 34(7): 068401
[2] Tian-Hao Ren, Yong Zhang, Bo Yan, Rui-Min Xu, Cheng-Yue Yang, Jing-Tao Zhou, Zhi Jin. A High Performance Terahertz Waveguide Detector Based on a Low-Barrier Diode[J]. Chin. Phys. Lett., 2016, 33(06): 068401
[3] Meng Kong, Ming-Sheng Chen, Liang Zhang, Xin-Yuan Cao, Xian-Liang Wu. Efficient Solution to Electromagnetic Scattering Problems of Bodies of Revolution by Compressive Sensing[J]. Chin. Phys. Lett., 2016, 33(01): 068401
[4] REN Tian-Hao, ZHANG Yong, YAN Bo, XU Rui-Min, YANG Cheng-Yue, ZHOU Jing-Tao, JIN Zhi. A 330–500 GHz Zero-Biased Broadband Tripler Based on Terahertz Monolithic Integrated Circuits[J]. Chin. Phys. Lett., 2015, 32(02): 068401
[5] CAO Xin-Yuan, CHEN Ming-Sheng, KONG Meng, ZHANG Liang, WU Xian-Liang. Method of Moments Based on Prior Knowledge for Solving Wide Angle EM Scattering Problems[J]. Chin. Phys. Lett., 2014, 31(11): 068401
[6] WANG Qi, ZHU Xiao-Feng, YUAN Xiao-Wen, CHEN Chang-Qing, LUO Xiang-Dong, ZHANG Bo. Sub-Wavelength Near-Field Metal Detection using an On-Chip Spintronic Technique[J]. Chin. Phys. Lett., 2013, 30(12): 068401
[7] LI Ru-Guan, JIANG Shu-Wen, GAO Li-Bin, LI Yan-Rong. A Distributed Phase Shifter Using Bi1.5Zn1.0Nb1.5O7/Ba0.5Sr0.5TiO3 Thin Films[J]. Chin. Phys. Lett., 2013, 30(7): 068401
[8] XING Qing-Zi, DU Lei, ZHENG Shu-Xin, GUAN Xia-Ling, LI Jian, CAI Jin-Chi, GONG Cun-Kui, WANG Xue-Wu, TANG Chuan-Xiang, James Billen, James Stovall, Lloyd Young. Tuning and Cold Test of a Four-Vane RFQ with Ramped Inter-Vane Voltage for the Compact Pulsed Hadron Source[J]. Chin. Phys. Lett., 2013, 30(5): 068401
[9] CAO Xin-Yuan, CHEN Ming-Sheng, WU Xian-Liang. Sparse Transform Matrices and Their Application in the Calculation of Electromagnetic Scattering Problems[J]. Chin. Phys. Lett., 2013, 30(2): 068401
[10] ZHANG Jun-Feng, LI De-Ren, CHEN Zheng, LU Zhi-Chao, ZHOU Shao-Xiong. Noise Suppression Effect of Composites Containing Glass-Covered Amorphous CoFeSiBCr Wires[J]. Chin. Phys. Lett., 2012, 29(6): 068401
[11] YAO Bin, ZHENG Qin-Hong, **, PENG Jin-Hui, ZHONG Ru-Neng, XIANG Tai, XU Wan-Song . Partially Loaded Cavity Analysis by Using the 2-D FDTD Method[J]. Chin. Phys. Lett., 2011, 28(11): 068401
[12] LIU Zong-Kai, ZHOU Ben-Mou**, LIU Hui-Xing, LIU Zhi-Gang, JI Yan-Liang . Direct Force Control of a Rudder with the Action of a Coplanar Waveguide Product Microwave[J]. Chin. Phys. Lett., 2011, 28(9): 068401
[13] ZHANG Yu, ZHANG Xin-Liang, CHEN Guo-Jie, XU En-Ming, HUANG De-Xiu. A Microwave Photonic Notch Filter Using a Microfiber Ring Resonator[J]. Chin. Phys. Lett., 2010, 27(7): 068401
[14] XU Wei, XIN Xiang-Jun, ZHAO Tong-Gang, LING Jing, YU Chong-Xiu. Generation of Carrier and Odd Sidebands Suppressed Optical MM-Wave with Signal Only on One Sideband Using an External Integrated Mach-Zehnder Modulator[J]. Chin. Phys. Lett., 2009, 26(12): 068401
[15] WEN Fu-Sheng, QIAO Liang, YI Hai-Bo, ZHOU Dong, LI Fa-Shen. Calculation of High Frequency Complex Permeability of Carbonyl Iron Flakes in a Nomagnetic Matrix[J]. Chin. Phys. Lett., 2008, 25(2): 068401
Viewed
Full text


Abstract