Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 060702    DOI: 10.1088/0256-307X/30/6/060702
GENERAL |
Dual-Frequency Atomic Force Microscopy Imaging Method and Experiment Based on Commercial AFM Platform
WANG Wei, QIAN Jian-Qiang**, LI Ying-Zi, CHEN Zhu-Li
Key Laboratory of Micro-nano Measurement-Manipulation and Physics (Ministry of Education), Department of Applied Physics, Beihang University, Beijing 100191
Cite this article:   
WANG Wei, QIAN Jian-Qiang, LI Ying-Zi et al  2013 Chin. Phys. Lett. 30 060702
Download: PDF(502KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A dual-frequency atomic force microscopy imaging system is set up to enhance the amplitude of higher harmonic signals. The experimental results of the dual-frequency imaging technology are given. Normally the image of the higher harmonic is helpful to optimize the imaging conditions in tapping mode and allows one to differentiate qualitatively between dissimilar materials that are hardly distinguishable by traditional atomic force microscopy.
Received: 12 November 2012      Published: 31 May 2013
PACS:  07.79.Lh (Atomic force microscopes)  
  68.37.Ps (Atomic force microscopy (AFM))  
  62.25.-g (Mechanical properties of nanoscale systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/060702       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/060702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Wei
QIAN Jian-Qiang
LI Ying-Zi
CHEN Zhu-Li
[1] Bing G, Quate C F and Gerber C 1986 Phys. Rev. Lett. 56 930
[2] Li W et al 2012 Opt. Precis. Eng. 20 796
[3] Giessibl F J 2003 Rev. Mod. Phys. 75 949
[4] Yin B H et al 2011 Opt. Precis. Eng. 19 2651
[5] Pethica J B and Oliver W C 1987 Phys. Scr. T19A 61
[6] Garcia R, Tamayo J and Paulo A S 1999 Surf. Interface Anal. 27 312
[7] M Tello et al 2003 Ultramicroscopy 97 171
[8] Noy C A et al 1998 Langmuir 14 1508
[9] Cleveland J P et al 1998 Appl. Phys. Lett. 72 2613
[10] Tamayo J and Garcia R 1998 Appl. Phys. Lett. 73 2926
[11] Stark R W 2010 Mater. Today 13 24
[12] Li Y et al 2010 Chin. Phys. B 19 50701
[13] Aksoy M D and Atalar A 2011 Phys. Rev. B 83 075416
[14] N F Martinez et al 2006 Appl. Phys. Lett. 89 153115
[15] Li Y and Qian J Q 2009 Chin. Phys. Lett. 26 100703
[16] Baumann M and Stark R W 2010 Ultramicroscopy 110 578
[17] Martinez-Martin D 2011 Phys. Rev. Lett. 106 198101
[18] Proksch R 2006 Appl. Phys. Lett. 89 113121
[19] Stark R W, Naujoks N and Stemmer A 2007 Nanotechnology 18 065502
[20] Stark R W and Heckl W M 2003 Rev. Sci. Instrum. 74 5111
Related articles from Frontiers Journals
[1] ZHANG Dong-Dong, WANG Xiao-Wei, WANG Rui, WANG Sheng-Nan, CHENG Zhi-Hai, QIU Xiao-Hui. Lateral Resolution and Signal to Noise Ratio in Electrostatic Force Detection Based on Scanning Probe Microscopy[J]. Chin. Phys. Lett., 2012, 29(7): 060702
[2] ZHAO Kun-Yu,ZENG Hua-Rong**,SONG Hong-Zhang,HUI Sen-Xing,LI Guo-Rong,YIN Qing-Rui. The Observation of Martensite and Magnetic Domain Structures in Ni53Mn24Ga23 Shape Memory Alloys by Scanning Electron Acoustic Microscopy and Scanning Thermal Microscopy[J]. Chin. Phys. Lett., 2012, 29(5): 060702
[3] BAI Yong-Qiang**, ZHU Xing, WU Jun-Zheng, BAI Wen-Guang . Micropore Structure Representation of Sandstone in Petroleum Reservoirs Using an Atomic Force Microscope[J]. Chin. Phys. Lett., 2011, 28(8): 060702
[4] LIU Li-Ming, ZENG Hua-Rong**, CAO Zhen-Zhu, LENG Xue, ZHAO Kun-Yu, LI Guo-Rong, YIN Qing-Rui . Piezoresponse Force Microscopy Imaging of Ferroelectric Domains in Bi(Zn1/2Ti1/2)O3−Pb(Mg1/3Nb2/3)O3−PbTiO3 Piezoelectric Ceramics[J]. Chin. Phys. Lett., 2011, 28(8): 060702
[5] ZHAO Ya-Jun, CHENG Qian, QIAN Meng-Lu. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope[J]. Chin. Phys. Lett., 2010, 27(5): 060702
[6] LI Yuan, QIAN Jian-Qiang. Higher Harmonics Generation in Tapping Mode Atomic Force Microscope[J]. Chin. Phys. Lett., 2009, 26(10): 060702
[7] ZHAO Kun-Yu, ZENG Hua-Rong, LI Guo-Rong, SONG Hong-Zhang, CHENG Li-Hong, HUI Sen-Xing, YIN Qing-Rui. Nanoscale Thermal Response in ZnO Varistors by Atomic Force Microscopy[J]. Chin. Phys. Lett., 2009, 26(10): 060702
[8] DING Xi-Dong, FU Gang, XIONG Xiao-Min, ZHANG Jin-Xiu. Characterization Method of Polycrystalline Materials Using Conductive Atomic Force Microscopy[J]. Chin. Phys. Lett., 2008, 25(10): 060702
[9] ZHAO Kun-Yu, ZENG Hua-Rong, SONG Hong-Zhang, HUI Sen-Xing, LI Guo-Rongv, YIN Qing-Rui, Kiyoshi Shimamura, Chinna Venkadasamy Kannan, Encarnacion Antonia Garcia Villora, Shunji Takekawa, Kenji Kitamura. Acoustic Imaging Frequency Dynamics of Ferroelectric Domains by Atomic Force Microscopy[J]. Chin. Phys. Lett., 2008, 25(9): 060702
[10] WANG Peng, YANG Hai-Jun, WANG Hua-Bin, LI Hai, WANG Xin-Yan, WANG Ying, LÜ, Jun-Hong, LI Bin, ZHANG Yi, HU Jun,. Modification of AFM Tips for Facilitating Picking-up of Nanoparticles[J]. Chin. Phys. Lett., 2008, 25(7): 060702
[11] CHEN Yu-Hang, HUANG Wen-Hao. Resonant Response of Rectangular AFM Cantilever in Liquid[J]. Chin. Phys. Lett., 2007, 24(2): 060702
[12] WANG Hua-Bin, ZHOU Xing-Fei, AN Hong-Jie, GUO Yun-Chang, SUNJie-Lin, ZHANG Yi, HU Jun,. Effects of Substrate Hydrophobicity/Hydrophilicity on Height Measurement of Individual DNA Molecules[J]. Chin. Phys. Lett., 2007, 24(3): 060702
[13] MA Hong-Xia, HAN Yan-Jun, SHENTU Wei-Jin, ZHANG Xian-Peng, LUO Yi,. A Novel Ni/Ag/Pt Ohmic Contact to P-Type GaN for Flip-Chip Light-Emitting Diodes[J]. Chin. Phys. Lett., 2006, 23(8): 060702
[14] WEI Zheng, ZHAO Ya-Pu. Experimental Investigation of the Velocity Effect on Adhesion Forces with an Atomic Force Microscope[J]. Chin. Phys. Lett., 2004, 21(4): 060702
[15] GONG Zheng, FANG Zhi-Dan, MIAO Zhen-Hua, NIU Zhi-Chuan, FENG Song-Lin. Self-Organized InAs Quantum Wires on GaAs (331)A Substrates[J]. Chin. Phys. Lett., 2003, 20(10): 060702
Viewed
Full text


Abstract