Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 059501    DOI: 10.1088/0256-307X/30/5/059501
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Differentiating Neutron Star Models by X-Ray Polarimetry
LU Ji-Guang1, XU Ren-Xin1**, FENG Hua2
1School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871
2Department of Engineering Physics and Center for Astrophysics, Tsinghua University, Beijing 100084
Cite this article:   
LU Ji-Guang, XU Ren-Xin, FENG Hua 2013 Chin. Phys. Lett. 30 059501
Download: PDF(468KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The nature of pulsars is still unknown because of the non-perturbative effects of the fundamental strong interaction, so various models of pulsar inner structures are suggested, either for conventional neutron stars or quark stars. Additionally, a quark-cluster matter state is conjectured for cold matter at supranuclear density, and as a result pulsars can be quark-cluster stars. Besides understanding the different manifestations, the most important issue is to find an effective way to observationally differentiate these models. X-ray polarimetry plays an important role here. The thermal x-ray polarization of quark/quark-cluster stars is focused on, and while the thermal x-ray linear polarization percentage is typically higher than ~10% in normal neutron star models, the percentage of quark/quark-cluster stars is almost zero. This could then be an effective method to identify quark/quark-cluster stars by soft x-ray polarimetry. We are therefore expecting to detect thermal x-ray polarization in the coming decades.
Received: 07 February 2013      Published: 31 May 2013
PACS:  95.55.Qf (Photometric, polarimetric, and spectroscopic instrumentation)  
  97.60.Gb (Pulsars)  
  26.60.Kp (Equations of state of neutron-star matter)  
  95.55.Ka (X- and γ-ray telescopes and instrumentation)  
  95.75.Hi (Polarimetry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/059501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/059501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Ji-Guang
XU Ren-Xin
FENG Hua
[1] Xu R X 2011 Int. J. Mod. Phys. E 20 149
[2] Dai S and Xu R X 2012 Int. J. Mod. Phys.: Conf. Ser. 10 137
[3] Xu R X 2003 Astrophys. J. 596 L59
[4] Pavlov G G and Zavlin V E 2000 Astrophys. J. 529 1011
[5] Zhang C M and Kojima Y 2006 Mon. Not. R. Astron. Soc. 366 137
[6] Gnedin Yu N and Sunyaev R A 1974 Astron. Astrophys. 36 379
[7] Heyl Jeremy S and Shaviv Nir J 2002 Phys. Rev. D 66
[8] Lai Dong and Ho Wynn C G 2003 Phys. Rev. Lett. 91 071101
[9] Lai Dong and Ho Wynn C G 2003 Astrophys. J. 588 962
[10] Urpin V A and Yakovlev D G 1980 Sov. Astron. 24 425
[11] Usov Vladimir V 2001 Astrophys. J. 550 L179
[12] Heilter W 1954 The Quantum Theory of Radiation (London: Oxford)
[13] Walter Frederick M, Wolk Scott J and Neuh?user 1996 Nature 379 233
[14] Braje Timothy M and Romani Roger W 2002 Astrophys. J. 580 1043
[15] Walter Frederick M 2004 J. Phys. G: Nucl. Part. Phys. 30 S461
[16] Lai X Y and Xu R X 2009 Mon. Not. R. Astron. Soc.: Lett. 398 L31
[17] Lai X Y, Gao C Y and Xu R X 2013 Mon. Not. R. Astron. Soc. (in press) arXiv:1107.0834
[18] Zhang C M, Wang J, Zhao Y H, Yin H X, Song L M, Menezes D P, Wickramasinghe D T, Ferrario L and Chardonnet P 2011 Astron. Astrophys. 527 A83
[19] Xu R X 2002 Astrophys. J. 570 L65
[20] van Adelsberg M, Lai D, Potekhin A Y and Arras P 2005 Astrophys. J. 628 902
[21] Marshall H L et al 2003 Astron. J. 125 459
[22] Tong H and Xu R X 2011 Int. J. Mod. Phys. E 20 15
[23] Ferrer E J and de la Incera V 2013 Lecture Notes in Physics arXiv:1208.5179 [astro-ph]
Related articles from Frontiers Journals
[1] YANG Shuang-Shou, WU Chong-Qing, LI Zheng-Yong, ZHANG Ren-Yuan, MENG Qing-Wen. Distributed Measurement of Birefringence by P-OTDR Assisted with Piezoelectric Polarization Controller[J]. Chin. Phys. Lett., 2008, 25(9): 059501
Viewed
Full text


Abstract