Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 054301    DOI: 10.1088/0256-307X/30/5/054301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Suppression of Natural Convection in a Thermoacoustic Pulse Tube Refrigerator
HAN Jun-Qing, LIU Qiu-Sheng**
Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
HAN Jun-Qing, LIU Qiu-Sheng 2013 Chin. Phys. Lett. 30 054301
Download: PDF(699KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of gravity on the efficiency of thermoacoustic engines are investigated theoretically and experimentally, especially for thermoacoustic pulse tube refrigerators. The significant effects of gravity are found to be due to the presence of natural convection in the thermoacoustic pulse tube when the hot side of the tube is lower than the cold side. This kind of natural convection influences and reduces the efficiency of the thermoacoustic working system. Thus, how to suppress this natural convection becomes important for increasing the efficiency of thermoacoustic engines. Unlike the method of inserting a silk screen in a pulse tube, the present study uses a numerical simulation method to research the natural convection in pulse tubes, and we try to change the shape of the pulse tube to suppress this convection.
Received: 05 November 2012      Published: 31 May 2013
PACS:  43.35.Ud (Thermoacoustics, high temperature acoustics, photoacoustic effect)  
  44.25.+f (Natural convection)  
  44.05.+e (Analytical and numerical techniques)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/054301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/054301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAN Jun-Qing
LIU Qiu-Sheng
[1] Ostrach S 1988 J. Heat Transfer 110 1175
[2] Khanafer K, Vafai K and Lightstone M 2003 Int. J. Heat Mass Transfer 46 3639
[3] Lee D Y, Park S J and Ro S T 1995 Int. J. Heat Mass Transfer 38 2529
[4] Thummes G et al 1997 Cryocoolers (New York: Springer) vol 9
[5] Trollier T et al 2004 Advances in Cryogenic Engineering vol 49 (New York: Springer)
[6] Ross R G and Johnson D L 2004 Cryogenics 44 403
[7] Fujimoto S, Kang Y M and Matsubara Y 2000 Cryocoolers (New York: Springer) vol 10
[8] Johnson D L et al 1997 Cryocoolers (New York: Springer) vol 9
[9] Kasthurirengan S et al 2004 Advances in Cryogenic Engineering (New York: Springer) vol 49
[10] Shiraishi M et al 2004 Cryogenics 44 101
[11] Shiraishi M, Fujisawa Y, Murakami M and Nanako A 2004 AIP Conf. Proc. 710 1560
[12] Patankar S V 1981 Numer. Heat Transfer Part A 4 409
[13] Kalabin E V, Kanashina M V and Zubkov P T 2005 Numer. Heat Transfer Part A 47 621
[14] Kasthurirengan S, Thummes G and Heiden C 2000 Advances in Cryogenic Engineering (New York: Springer) vol 45
[15] Cha J et al 2006 Cryogenics 46 658
[16] Aktas M K and Ozgumus T 2010 Int. J. Heat Mass Transfer 53 5289
Related articles from Frontiers Journals
[1] LI Wen-Chao, YUAN Jie, SHEN Qing-Hong, YU Yao, ZHOU Yu, DU Si-Dan, LIU Xiao-Jun, XU Guan, WANG Xue-Ding. Novel Image Optimization Method for Joint Photoacoustic Tomography[J]. Chin. Phys. Lett., 2014, 31(05): 054301
[2] YANG Si-Hua, YIN Guang-Zhi, XING Da. Pharmacokinetic Monitoring of Indocyanine Green for Tumor Detection Using Photoacoustic Imaging[J]. Chin. Phys. Lett., 2010, 27(9): 054301
[3] GU Gang, ZANG Wencheng, ZENG Hao, CHEN Geng, DU Youwei, ZHENG Yibin*, ZHANG Shuyi*. Photoacoustic Spectroscopy Measurement of C60 Thin Film[J]. Chin. Phys. Lett., 1994, 11(2): 054301
[4] XIAO Guangming, HUANG Yuying, JIANG Donghong, XIAN Dingchang. Photoacoustic Chopping Frequency Response to X-ray Absorption[J]. Chin. Phys. Lett., 1991, 8(3): 054301
Viewed
Full text


Abstract