Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 054212    DOI: 10.1088/0256-307X/30/5/054212
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High-Resolution Compact Plasmonic Wavelength Demultiplexers Based on Cascading Square Resonators
CHEN Zhao, YU Li**, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, XIAO Jing-Hua
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
CHEN Zhao, YU Li, WANG Lu-Lu et al  2013 Chin. Phys. Lett. 30 054212
Download: PDF(612KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A compact high-resolution structure for plasmonic wavelength demultiplexers with cascading square resonators is proposed and demonstrated numerically by using the two-dimensional finite element method. It is found that the full width at half maximum of the transmission spectrum can be narrower (~10 nm) than any results reported before. The simulation results can be explained by the temporal coupled-mode theory. This structure can be easily extended to 1×N channels, which has an important role in the wavelength division multiplexing system in nanoscale.
Received: 29 January 2013      Published: 31 May 2013
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  52.25.-b (Plasma properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/054212       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/054212
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Zhao
YU Li
WANG Lu-Lu
ZHAO Yu-Fang
DUAN Gao-Yan
XIAO Jing-Hua
[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Lee T W and Gray S 2005 Opt. Express 13 9652
[3] Wang B and Wang G P 2004 Opt. Lett. 29 1992
[4] Park J, Kim H and Lee B 2008 Opt. Express 16 413
[5] Leon I D and Berini P 2010 Nat. Photon. 4 382
[6] Wurtz G A, Pollard R and Zayats A V 2006 Phys. Rev. Lett. 97 057402
[7] Nikolajsen T, Leosson K and Bozhevolnyi S I 2004 Appl. Phys. Lett. 85 5833
[8] Enoch S, Quidant R and Badenes G 2004 Opt. Express 12 3422
[9] Kim H, Park J and Lee B 2009 Opt. Lett. 34 2569
[10] Wang B and Wang G P 2005 Appl. Phys. Lett. 87 013107
[11] Lin X S and Huang X G 2008 Opt. Lett. 33 2874
[12] Wang T B, Wen X W, Yin C P and Wang H Z 2009 Opt. Express 17 24096
[13] Wang G X, Lu H, Liu X M, Mao D and Duan L N 2011 Opt. Express 19 3513
[14] Hu F F, Yi H X and Zhou Z P 2011 Opt. Lett. 36 1500
[15] Chen Z, Song G, Yu L, Chen J J and Xiao J H 2012 Chin. Phys. Lett. 29 104210
[16] Dionne J A, Sweatlock L A, Atwater H A and Polman A 2006 Phys. Rev. B 73 035407
[17] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[18] Chen J J, Li Z, Li J and Gong Q H 2011 Opt. Express 19 9976
Related articles from Frontiers Journals
[1] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 054212
[2] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 054212
[3] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 054212
[4] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 054212
[5] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Leaky Modes in Ag Nanowire over Substrate Configuration[J]. Chin. Phys. Lett., 2017, 34(9): 054212
[6] Bing-Xi Xiang, Lei Wang, Yu-Jie Ma, Li Yu, Huang-Pu Han, Shuang-Chen Ruan. Supercontinuum Generation in Lithium Niobate Ridge Waveguides Fabricated by Proton Exchange and Ion Beam Enhanced Etching[J]. Chin. Phys. Lett., 2017, 34(2): 054212
[7] Wei-Jie Mai, Yi-Lin Wang, Yun-Yun Zhang, Lu-Na Cui, Li Yu. Refractive Plasmonic Sensor Based on Fano Resonances in an Optical System[J]. Chin. Phys. Lett., 2017, 34(2): 054212
[8] LIANG Han, ZHAN Ke-Tao, HOU Zhi-Ling. Extraordinary Optical Confinement in a Silicon Slot Waveguide with Metallic Gratings[J]. Chin. Phys. Lett., 2015, 32(06): 054212
[9] ZHANG Xi-Lin, LIU Song-Tao, LU Dan, ZHANG Rui-Kang, JI Chen. Design and Fabrication of a 400 GHz InP-Based Arrayed Waveguide Grating with Flattened Spectral Response[J]. Chin. Phys. Lett., 2015, 32(5): 054212
[10] Labbani Amel, Benghalia Abdelmadjid. Design of Photonic Crystal Triplexer with Core-Shell Rod Defects[J]. Chin. Phys. Lett., 2015, 32(5): 054212
[11] ZHANG Xin-Yuan, WANG Lu-Lu, CHEN Zhao, CUI Lu-Na, SHANG Ce, ZHAO Yu-Fang, DUAN Gao-Yan, LIU Jian-Bin, YU Li. The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(5): 054212
[12] SHANG Ce, CHEN Zhao, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, YU Li. Characteristics of the Coupled-Resonator Structure Based on a Stub Resonator and a Nanodisk Resonator[J]. Chin. Phys. Lett., 2014, 31(11): 054212
[13] HU Ru, LANG Pei-Lin, ZHAO Yu-Fang, DUAN Gao-Yan, WANG Lu-Lu, DAI Jin, CHEN Zhao, YU Li, XIAO Jing-Hua. Millimeter Propagation and High Confinement in Rhombus-Based Hybrid Plasmonic Waveguides[J]. Chin. Phys. Lett., 2014, 31(09): 054212
[14] Rakibul Hasan Sagor, Md. Ruhul Amin, Md. Ghulam Saber. Design of a Simple Integrated Coupler for SPP Excitation in a Dielectric Coated Ag Thin Film[J]. Chin. Phys. Lett., 2014, 31(06): 054212
[15] ZHANG Xi-Lin, LU Dan, ZHANG Rui-Kang, WANG Wei, JI Chen. A MOCVD-Growth Multi-Wavelength Laser Monolithically Integrated on InP[J]. Chin. Phys. Lett., 2014, 31(06): 054212
Viewed
Full text


Abstract