Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 050302    DOI: 10.1088/0256-307X/30/5/050302
GENERAL |
The Strategic Form of Quantum Prisoners' Dilemma
Ahmad Nawaz**
National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320, Pakistan
Cite this article:   
Ahmad Nawaz 2013 Chin. Phys. Lett. 30 050302
Download: PDF(485KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In a normal form, prisoners' dilemma (PD) is represented by a payoff matrix showing players' strategies and payoffs. To obtain the distinguishing trait and strategic form of PD, certain constraints are imposed on the elements of its payoff matrix. We quantize PD by a generalized quantization scheme to analyze its strategic behavior in the quantum domain. The game starts with a general entangled state of the form |ψ>=cos(ξ/2)|00>+sin(ξ/2)|11> and the measurement for payoffs is performed in entangled and product bases. We show that for both measurements, there exist respective cutoff values of entanglement of the initial quantum state up to which the strategic form of the game remains intact. Beyond these cutoffs the quantized PD behaves like the chicken game (CG) up to another cutoff value. For the measurement in the entangled basis the dilemma is resolved for sinξ >1/7 with QQ as a Nash Equilibrium (NE). However, the quantized game behaves like PD when sinξ >1/3; whereas in the range 1/7<sinξ <1/3 it behaves like CG with QQ as an NE. For the measurement in the product basis the quantized PD behaves like classical PD for sin2(ξ/2) <1/3 with DD as an NE. In region 1/3<sin2(ξ/2)<3/7, the quantized PD behaves like classical CG with CD and DC as NEs.

Received: 05 November 2012      Published: 31 May 2013
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  02.50.Le (Decision theory and game theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/050302       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/050302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ahmad Nawaz

[1] Dixit A and Skeath S 1999 Games of Strategy 1st edn (New York: W. W. Norton & Company)
[2] von Neumann J and Morgenstern O 1953 Theory of Games and Economic Behavior 3rd edn (Princeton: Princeton University Press)
[3] Nash J F 1950 Proc. Natl. Acad. Sci. USA 36 48
[4] Carlsson B 1998 Evolutionary Models Multi-Agent Syst. (Lund University Cognitive Studies) p 72
[5] Szabo G and Toke C 1998 Phys. Rev. E 58 69
[6] Eisert J, Wilkens M, Lewenstein M 1999 Phys. Rev. Lett. 833077
[7] Eisert J and Wilkens M 2000 J. Mod. Opt. 47 2543
[8] Du J, Li H, Xu X, Shi M, Wu J, Zhou X and Han R 2002 Phys. Rev. Lett. 88 137902
[9] Zhou L and Kuang L M 2003 Phys. Lett. A 315 426
[10] Lee C F and Johnson N F 2003 Phys. Lett. A 319 429
[11] Iqbal A and Toor A H 2002 Phys. Rev. A 65 022306
[12] Piotrowski E W and Sladowski 2003 Int. J. Quantum Inf. 1 395
[13] Flittney A P and Abbott D 2003 Proc. R. Soc. London Ser. A 459 2463
[14] Cheon T 2005 Europhys. Lett. 69 149
[15] Ozdemir S K, Shimamura J, Morikoshi F and Imoto N 2004 Phys. Lett. A 333 218
[16] Ozdemir S K, Shimamura J and Imoto N 2007 New J. Phys. 9 43
[17] Shimamura J, Ozdemir S K, Morikoshi F and Imoto N 2004 Phys. Lett. A 328 20
[18] Chen L K, Ang H, Kiang D, Kwek L C and Lo C F 2003 Phys. Lett. A 316 317
[19] Flitney A P and Abbott D 2005 J. Phys. A 38 449
[20] Francisco A and Rosero H 2004 MS thesis (Universidad delos Andes) arXiv:quant-ph/0402117
[21] Schneider David 2012 J. Phys. A: Math. Theor. 45 085303
[22] Marinatto L and Weber T 2000 Phys. Lett. A 272 291
[23] Iqbal A and Toor A H 2002 Phys. Rev. A 65 052328
[24] Nawaz Ahmad and Toor A H 2010 Chin. Phys. Lett. 27 050303
[25] Iqbal A and Toor A H 2001 Phys. Lett. A 280 249
[26] Fr?ckiewicz Piotr 2012 J. Phys. A: Math. Theor. 45 085307
[27] Nawaz Ahmad and Toor A H 2004 J. Phys. A: Math. Gen. 37 11457
[28] Russel B 1959 Common Sense and Nuclear Warfare (Simon & Schuster)
[29] Osborne M J and Robinstein Ariel 1994 A Course in Game Theory (Cambridge: MIT Press)

Related articles from Frontiers Journals
[1] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 050302
[2] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 050302
[3] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 050302
[4] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 050302
[5] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 050302
[6] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 050302
[7] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 050302
[8] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 050302
[9] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 050302
[10] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 050302
[11] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 050302
[12] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 050302
[13] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 050302
[14] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 050302
[15] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 050302
Viewed
Full text


Abstract