Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 050301    DOI: 10.1088/0256-307X/30/5/050301
GENERAL |
Charge States and Transition of Double Quantum Dot in the Few-Electron Regime
ZHOU Cheng, WANG Li, TU Tao**, HAN Tian-Yi, LI Hai-Ou, GUO Guo-Ping**
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
Cite this article:   
ZHOU Cheng, WANG Li, TU Tao et al  2013 Chin. Phys. Lett. 30 050301
Download: PDF(635KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present transport characterizations of a fully tunable double quantum dot over the few electron number down to zero, which is defined by means of surface gates on top of a GaAs/AlGaAs heterostructure. We also perform numerical simulations to map out the charge stability diagram, which is consistent with the measurements. The results demonstrate that the electric control in the double dot can be significantly enhanced by improving the design of the device structure, which provides potential advantages for quantum information processing.

Received: 28 January 2013      Published: 31 May 2013
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/050301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/050301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Cheng
WANG Li
TU Tao
HAN Tian-Yi
LI Hai-Ou
GUO Guo-Ping

[1] Hayashi T, Fujisawa T, Cheong H D, Jeong Y H and Hirayama Y 2003 Phys. Rev. Lett. 91 226804
[2] Taylor J M, Engel H A, Dur W, Yacoby A, Marcus C M, Zoller P and Lukin M D 2005 Nat. Phys. 1 177
[3] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[4] Shulman M D, Dial O E, Harvey S P, Bluhm H, Umansky V and Yacoby A 2012 Science 336 202
[5] Fujisawa T, Hayashi T and Sasaki S 2006 Rep. Prog. Phys. 69 759
[6] Cao G, Wang L, Tu T, Li H O, Xiao M and Guo G P 2012 Chin. Phys. Lett. 29 030306
[7] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[8] Lin Z R, Guo G P, Tu. T, Zhu F Y and Guo G C 2008 Phys. Rev. Lett. 101 230501
[9] Guo G P, Zhang H, Hu Y, Tu T and Guo G C 2008 Phys. Rev. A 78 020302
[10] Zhu F Y, Tu T, Hao X J, Guo G C and Guo G P 2009 Chin. Phys. Lett. 26 050301
[11] Petta J R, Johnson A C, Hanson M P, Marcus C M and Gossard A C 2004 Phys. Rev. Lett. 93 186802
[12] Petersson K D, Petta J R, Lu H and Gossard A C 2010 Phys. Rev. Lett. 105 246804
[13] Dovzhenko Y, Stehlik J, Petersson K D, Petta J R, Lu H and Gossard A C 2011 Phys. Rev. B 84 161302
[14] Cao G, Li H O, Tu T, Wang L, Zhou C, Xiao M, Guo G C, Jiang H W and Guo G P 2013 Nat. Commun. 4 1401
[15] Zhang X C, Mazzreo G, Brataas A, Xiao M, Yablonovitch E and Jiang H W 2009 Phys. Rev. B 80 035321
[16] Cao G, Li H O, Tu T, Zhou C, Hao X J, Guo G C and Guo G P 2009 Chin. Phys. Lett. 26 097302
[17] Best J S 1979 Appl. Phys. Lett. 34 522
[18] Bednarek S, Lis K and Szafran B 2008 Phys. Rev. B 77 115320
[19] Stopa M 1996 Phys. Rev. B 54 13767

Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 050301
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 050301
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 050301
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 050301
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 050301
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 050301
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 050301
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 050301
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 050301
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 050301
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 050301
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 050301
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 050301
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 050301
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 050301
Viewed
Full text


Abstract